Skip to main content

Advertisement

Log in

Judd–Ofelt analysis, structural and spectroscopic properties of sol–gel derived LaNbO4:Dy3+ phosphors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La1−xNbO4:xDy3+ phosphors were synthesized through sol–gel route. XRD analysis confirms pure fergusonite monoclinic structure of La1−xNbO4:xDy3+ phosphor. The FTIR and Raman spectra show the vibrational modes present in La1−xNbO4:xDy3+ phosphor. The surface morphology and internal microstructure of the prepared phosphor were analysed by scanning electron microscopy and transmission electron microscopy and its microstructure is useful for better luminescence efficiency. UV–VIS-NIR spectrum of La1−xNbO4:xDy3+ phosphor was analysed on the basis of Judd–Ofelt theory and the J–O intensity parameters (Ωλ) were calculated. The radiative properties such as radiative transition probability, branching ratio, stimulated emission cross-section and optical gain were investigated using J–O intensity parameters. Energy transfer process between host and Dy3+ ions was studied at host excitation of 251 nm and tunable color emission from blue to near white was obtained with increasing concentration of Dy3+ ion. Excitation into 4f levels of Dy3+ ions at 351 nm show cool white light emission and the corresponding decay time, color coordinates and color correlation temperature were calculated. The results indicate that the prepared phosphor produce white light emission from a single phase host and can be used for near ultraviolet pumped white light emitting diode (NUV WLED) applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Ye, F. Xiao, Y.X. Pan, Y.Y. Ma, Q.Y. Zhang, Mater. Sci. Eng. 71, 1–34 (2010)

    Article  Google Scholar 

  2. W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, 2nd edn. (CRC Press, Boca Raton, 2007)

  3. K. Takahashi, A. Yoshikawa, A. Sandhu, Wide bandgap semiconductors, fundamental properties and modern photonic and electronic devices, (Springer, Berlin, 2007)

    Google Scholar 

  4. C. Guo, L. Luan, Y. Xu, F. Gao, L. Liang, J. Electrochem. Soc. 155(11), J310–J314 (2008)

    Article  Google Scholar 

  5. M. Shang, C. Li, J. Lin, Chem. Soc. Rev. 43, 1372–1386 (2014)

    Article  Google Scholar 

  6. G. Zhu, Z. Ci, Q. Wang, Y. Shi, Y. Wang, Opt. Mater. Express. 3,1810–1819 (2013)

    Article  Google Scholar 

  7. W. Ran, Q. Wang, Y. Zhou, S. Ding, J. Shi, J.H. Jeong, Mater. Res. Bull. 64, 146–150 (2015)

    Article  Google Scholar 

  8. H. Liu, L. Liao, Q. Guo, D. Yang, L. Mei, J. Lumin. 181, 407–410 (2017)

    Article  Google Scholar 

  9. C. Li, J. Dai, J. Huang, D. Deng, H. Yu, L. Wang, Y. Ma, Y. Hua, S. Xu, Ceram. Int. 42, 6891–6898 (2016)

    Article  Google Scholar 

  10. J. Zhao, C. Guo, X. Su, H.M. Noh, J.H. Jeong, J. Am. Ceram. Soc. 97, 1878–1882 (2014)

    Article  Google Scholar 

  11. C. Guo, X. Ding, L. Luan, Y. Xu, Sens. Actuators 143, 712–715 (2010)

    Article  Google Scholar 

  12. M. Yang, X. Zhao, Y. Ji, F. Liu, W. Liu, J. Sun, X. Liu, New J. Chem. 38, 4249–4257 (2014)

    Article  Google Scholar 

  13. A. Dwivedi, A.K. Singh, S.B. Rai, Dalton Trans. 43, 15906–15914 (2014)

    Article  Google Scholar 

  14. L. Qin, D.L. Wei, Y. Huang, C. Qin, P. Cai, S.I. Kim, H.J. Seo, Mater. Chem. Phys. 147, 1195–1203 (2014)

    Article  Google Scholar 

  15. S.K. Lee, H. Chang, C.H. Han, H.J. Kim, H.G. Jang, H.D. Park, J. Solid. State. Chem. 156, 267–273 (2001)

    Article  Google Scholar 

  16. J. Hou, P. Chen, G. Zhang, W. Jiang, F. Huang, Z. Ma, J. Lumin. 146, 97–101 (2014)

    Article  Google Scholar 

  17. P. Sun, P. Dai, J. Yang, C. Zhao, X. Zhang, Ceram. Int. 41, 3009–3016 (2015)

    Article  Google Scholar 

  18. H. Fjeld, K. Toyoura, R. Haugsrud, Phys. Chem. 12, 10313–10319 (2010)

    Google Scholar 

  19. S. Tsunekawa, H. Takei, J. Phys. Soc. Jpn. 40, 1523–1524 (1976)

    Article  Google Scholar 

  20. M. Arai, Y.X. Wang, S. Kohiki, M. Matsuo, H. Shimooka, T. Shishido, M. Oku, Jpn. J. Appl. Phys. 44, 6596–6599 (2005)

    Article  Google Scholar 

  21. A. Magraso, M.L. Fontaine, J. Power Sources 196, 10183–10190 (2011)

    Article  Google Scholar 

  22. L. Jian, C.M. Wayman, J. Am. Ceram. Soc. 80, 803–806 (1997)

    Article  Google Scholar 

  23. A.H. Buth, G. Blasse, Phys. Stat. Sol. 64, 669–676 (1981)

    Article  Google Scholar 

  24. C. Balamurugan, D.W. Lee, A. Subramania, App. Surf. Sci. 283, 58–64 (2013)

    Article  Google Scholar 

  25. C. Li, R.D. Bayliss, S.J. Skinner, Solid state Ion. 262, 530–535 (2014)

    Article  Google Scholar 

  26. K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, J. Lin, Phys. Chem. 17, 4283–4292 (2015)

    Google Scholar 

  27. H. Junli, Z. Liya, L. Zhaoping, G. Fuzhong, H. Jianpeng, W. Rongfang, J. Rare Earths 28, 356–360 (2010)

    Article  Google Scholar 

  28. S.A. Naidu, S. Boudin, U.V. Varadaraju, B. Raveau, J. Mater. Chem. 22, 1088–1093 (2012)

    Article  Google Scholar 

  29. G. Blasse, J. Solid state chem. 7, 169–171 (1973)

    Article  Google Scholar 

  30. M. Nazarov, Y.J. Kim, E.Y. Lee, K.I. Min, M.S. Jeong, S.W. Lee, D.Y. Noh, J. Appl. Phys. 107, 103104 (2010)

    Article  Google Scholar 

  31. H. Jiwei, C. Qiao, G. Chan, D. Rucheng, Z. Jianwu, W. Zhongping, Z. Zengming, D. Zejun, J. Rare Earths 32, 787–791 (2014)

    Article  Google Scholar 

  32. M.P.F. Graca, M.V. Peixoto, N. Ferreira, J. Rodrigues, C. Nico, F.M. Costa, T. Monterio, J. Mater. Chem. C 1, 2913–2919 (2013)

    Article  Google Scholar 

  33. R.Y. Yang, H.L. Lai, J. Lumin. 145, 49–54 (2014)

    Article  Google Scholar 

  34. D.W. Kim, D.K. Kwon, S.H. Yoon, K.S. Hong, J. Am. Ceram. soc. 89, 3861–3864 (2006)

    Article  Google Scholar 

  35. L. Jian, C.M. Huang, G. Xu, C.M. Wayman, Mater. Lett. 21, 105–110 (1994)

    Article  Google Scholar 

  36. H.W. Lee, J.H. Park, S. Nahm, D.W. Kim, J.G. Park, Mater. Res. Bull. 45, 21–24 (2010)

    Article  Google Scholar 

  37. J. Liao, D. Zhou, B. Yang, R. Liu, Q. Zhang, Opt. Mater. 35, 274–279 (2012)

    Article  Google Scholar 

  38. R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa, K.S. Anantharaju, B.M. Nagabhushana, H.B. Premkumar, K.M. Girish, Spectrochim. Acta A 140, 516–523 (2015)

    Article  Google Scholar 

  39. B.R. Judd, Phys. Rev. 127, 750 (1962)

    Article  Google Scholar 

  40. G.S. Ofelt, J. Chem. Phys. 37, 511 (1962)

    Article  Google Scholar 

  41. S. Dutta, S. Som, S.K. Sharma, RSC Adv. 5, 7380 (2015)

    Article  Google Scholar 

  42. G. Dominiak-Dzik, W. Ryba-Romanowski, M.N. Palatnikov, N.V. Sidorov, V.T. Kalinnikov, J. Mol. Struct. 704, 139–144 (2004)

    Article  Google Scholar 

  43. O. Ravi, C. Madhukar Reddy, B. Sudhakar Reddy, B. Deva Prasad Raju, Opt. Commun. 321, 263–268 (2014)

    Article  Google Scholar 

  44. K. VenkataRao, S. Babu, G. Venkataiah, Y.C. Ratnakaram, J. Mol. Struct. 1094, 274–280 (2015)

    Article  Google Scholar 

  45. G. Blasse, J. Chem. Phys. 45, 2356–2360 (1966)

    Article  Google Scholar 

  46. Y.J. Hsiao, T.H. Fang, Y.S. Chang, Y.H. Chang, C.H. Liu, L.W. Ji, W.Y. Jywe, J. Lumin. 126, 866–870 (2007)

    Article  Google Scholar 

  47. Y.J. Hsiao, T.H. Fang, L.W. Ji, S.S. Chi. Open Surf. Sci. J. 1, 30–33 (2009)

    Article  Google Scholar 

  48. X. Xiao, B. Yan, J. Mater. Res. 23, 679–687 (2008)

    Article  Google Scholar 

  49. E.Y. Lee, M. Nazarov, Y.J. Kim, J. Elect. Chem. Soc. 157, J102–J105 (2010)

    Article  Google Scholar 

  50. M. Vijayakumar, K. Mahesvaran, D.K. Patel, S. Arunkumar, K. Marimuthu, Opt. Mater. 37, 695–705 (2014)

    Article  Google Scholar 

  51. P.B. Devaraja, D.N. Avadhani, H. Nagabhushana, S.C. Prashantha, S.C. Sharma, B.M. Nagabhushana, H.P. Nagaswarupa, B. Daruka Prasad, Mater. Charact. 97, 27–36 (2014)

    Article  Google Scholar 

  52. L. Jing, X. Liu, Y. Li, Y. Wang, J. Lumin. 162, 185–190 (2015)

    Article  Google Scholar 

  53. G. Blasse, J. Solid State Chem. 62, 207–211 (1986)

    Article  Google Scholar 

  54. P. Babu, K.H. Jang, E.S. Kim, L. Shi, H.J. Seo, J. Korean Phys. Soc. 54,1488–1491 (2009)

    Article  Google Scholar 

  55. R.T. Karunakaran, K. Marimuthu, S.S. Babu, S. Arumugam, J. Lumin. 130, 1067–1072 (2010)

    Article  Google Scholar 

  56. C.S. McCamy, Color Res. Appl., 17,142–144 (1992)

    Article  Google Scholar 

  57. T. Erdem, S. Nizamoglu, X.W. Sun, H.V. Demir, Opt. Express 18, 340–347 (2010)

    Article  Google Scholar 

  58. R. Shrivastava, J. Kaur, M. Dash, Superlattices Microstruct. 82, 262–268 (2015)

    Article  Google Scholar 

  59. R.J. Xie, Y. Q. Li, N. Hirosaki, H. Yamamoto, Nitride phosphors and solid-state lighting, (CRC Press, Boca Raton, 2011)

    Google Scholar 

  60. Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda, M. Mitomo, Chem. Mater. 20, 6704–6714 (2008)

    Article  Google Scholar 

  61. N. Guo, Y. Jia, W. Lu, W. Lv, Q. Zhao, M. Jiao, B. Shao, H. You. Dalton Trans. 42, 5649–5564 (2013)

    Article  Google Scholar 

  62. L. Wang, H. Zhang, X.J. Wang, B. Dierre, T. Suehiro, T. Takeda, N. Hirosaki, R.J. Xie, Phys. Chem. Chem. Phys. 17, 15797–15804 (2015)

    Article  Google Scholar 

  63. G. Zhu, Z. Ci, S. Xin, Y. Wen, Y. Wang, Mater. Lett. 91, 304–306 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial assistance from UGC (Govt. of India) and DST (Govt. of India) through SAP-DRS and DST-PURSE programs, respectively. The authors are thankful to Prof. M. K Jayaraj, Cusat, Cochin and Prof. C. K Jayasankar, Sri Venkateswara University, for micro Raman and fluorescence decay analysis respectively. The authors Remya Mohan P, Viji Vidyadharan and Sreeja E are also thankful to UGC for providing UGC-BSR Research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Biju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remya Mohan, P., Vidyadharan, V., Sreeja, E. et al. Judd–Ofelt analysis, structural and spectroscopic properties of sol–gel derived LaNbO4:Dy3+ phosphors. J Mater Sci: Mater Electron 28, 10250–10261 (2017). https://doi.org/10.1007/s10854-017-6792-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6792-y

Keywords

Navigation