Skip to main content

Advertisement

Log in

Decrease of steady-state solubility of Ag in Cu by high-pressure torsion at low temperature

  • Processing Bulk Nanostructured Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

During the high pressure torsion (HPT) of a material, a steady-state is reached after a certain number of the plunger revolutions. This steady-state is determined by the dynamic equilibrium between the formation of crystal lattice defects during deformation and their relaxation. In particular, during HPT of binary solid solutions, the competition takes place between the dissolution of particles of the second phase (and enrichment of the solid solution), on the one hand, and the decomposition of the solid solution (and precipitation of the second phase), on the other hand. As a result, a certain steady-state concentration of the second component css appears in a binary solid solution during HPT. This concentration is equifinal, it depends only on the HPT conditions, but not on the initial state of the binary alloy. In copper-silver alloys subjected to HPT at room temperature, this concentration is css = 5.5 wt.% Ag (Acta Mater. 195 (2020) 184). It can be expected that a change in the HPT temperature should shift the dynamic equilibrium and change the css concentration. In this work, we annealed the samples of Cu − 8 wt.% Ag alloy at 790 °C, 300 h and at 500 °C, 770 h. After annealing at 790 °C almost all silver atoms were diluted in copper matrix. After annealing at 500 °C all silver atoms were in the precipitates and copper matrix was almost pure. The annealed samples were subjected to the HPT at 6 GPa, 1 rpm, 300 K and 77 K. After HPT the silver concentration css in the first sample decreased and in the second one increased. It turned out that the steady-state concentration css indeed changed with decrease of HPT temperature from 300 to 77 K. It decreased to css = 3.9 wt.% Ag. It means that the dynamic equilibrium between dissolution and precipitation of silver atoms is shifted, and precipitation prevails at 77 K. HPT also changes the size of silver precipitates. The big precipitates dissolve and small ones grow. Thus, the size of silver precipitates also comes from the top and from the bottom to the steady-state one (about 50 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

All necessary data are in the text of this paper.

References

  1. Azabou M, Makhlouf T, Saurin J, Escoda L, Suñol JJ, Khitouni M (2016) A study of densification and phase transformations of nanocomposite Cu-Fe prepared by mechanical alloying and consolidation process. Int J Adv Manuf Technol 87:981–987. https://doi.org/10.1007/s00170-016-8551-2

    Article  Google Scholar 

  2. Mazilkin AA, Straumal BB, Rabkin E, Baretzky B, Enders S, Protasova SG, Kogtenkova OA, Valiev RZ (2006) Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation. Acta Mater 54:3933–3939. https://doi.org/10.1016/j.actamat.2006.04.025

    Article  CAS  Google Scholar 

  3. Straumal B, Kilmametov AR, Kucheev YuO, Kurmanaeva L, Ivanisenko Yu, Baretzky B, Korneva A, Zięba P, Molodov DA (2014) Phase transitions during high pressure torsion of Cu–Co alloys. Mater Lett 118:111–114. https://doi.org/10.1016/j.matlet.2013.12.042

    Article  CAS  Google Scholar 

  4. Huang Y, Sabbaghianrad S, Almazrouee AI, Al-Fadhalah KJ, Alhajeri SN, Langdon TG (2016) The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion. Mater Sci Eng A 656:55–66. https://doi.org/10.1016/j.msea.2016.01.027

    Article  CAS  Google Scholar 

  5. Lugo N, Llorca N, Cabrera JM, Horita Z (2008) Microstructures and mechanical properties of pure copper deformed severely by equal-channel angular pressing and high pressure torsion. Mater Sci Eng A 477:366–371. https://doi.org/10.1016/j.msea.2007.05.083

    Article  CAS  Google Scholar 

  6. Čížek J, Janeček M, Srba O, Kužel R, Barnovská Z, Procházka I, Dobatkin S (2011) Evolution of defects in copper deformed by high-pressure torsion. Acta Mater 59:2322–2329. https://doi.org/10.1016/j.actamat.2010.12.028

    Article  CAS  Google Scholar 

  7. Liao XZ, Zhao YH, Zhu YT, Valiev RZ, Gunderov DV (2004) Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. J Appl Phys 96:636–640. https://doi.org/10.1063/1.1757035

    Article  CAS  Google Scholar 

  8. Straumal BB, Mazilkin AA, Baretzky B, Rabkin E, Valiev RZ (2012) Accelerated diffusion and phase transformations in Co-Cu alloys driven by the severe plastic deformation. Mater Trans 53:63–71. https://doi.org/10.2320/matertrans.MD201111

    Article  CAS  Google Scholar 

  9. Shamsborhan M, Ebrahimi M (2016) Production of nanostructure copper by planar twist channel angular extrusion process. J Alloys Comp 682:552–556. https://doi.org/10.1016/j.jallcom.2016.05.012

    Article  CAS  Google Scholar 

  10. Tang CL, Li H, Li SY (2016) Effect of processing route on grain refinement in pure copper processed by equal channel angular extrusion. Trans Nonferr Met Soc China 26:1736–1744. https://doi.org/10.1016/S1003-6326(16)64286-3

    Article  CAS  Google Scholar 

  11. Mao ZN, Gu RC, Liu F, Liu Y, Liao XZ, Wang JT (2016) Effect of equal channel angular pressing on the thermal-annealing-induced microstructure and texture evolution of cold-rolled copper. Mater Sci Eng A 674:186–192. https://doi.org/10.1016/j.msea.2016.07.050

    Article  CAS  Google Scholar 

  12. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016) Microstructure quantification of ultrafine grained pure copper fabricated by simple shear extrusion (SSE) technique. Mater Sci Eng A 674:221–231. https://doi.org/10.1016/j.msea.2016.08.001

    Article  CAS  Google Scholar 

  13. Bagherpour E, Qods F, Ebrahimi R, Miyamoto H (2016) Microstructure evolution of pure copper during a single pass of simple shear extrusion (SSE): role of shear reversal. Mater Sci Eng A 666:324–338. https://doi.org/10.1016/j.msea.2016.04.080

    Article  CAS  Google Scholar 

  14. Yadav PC, Sinhal A, Sahu S, Roy A, Shekhar S (2016) Microstructural inhomogeneity in constrained groove pressed Cu-Zn alloy sheet. J Mater Eng Perform 25:2604–2614. https://doi.org/10.1007/s11665-016-2142-0

    Article  CAS  Google Scholar 

  15. Mazilkin A, Straumal B, Kilmametov A, Straumal P, Baretzky B (2019) Phase transformations induced by severe plastic deformation. Mater Trans 60:1489–1499. https://doi.org/10.2320/matertrans.MF201938

    Article  CAS  Google Scholar 

  16. Straumal BB, Protasova SG, Mazilkin AA, Rabkin E, Goll D, Schütz G, Baretzky B, Valiev R (2012) Deformation-driven formation of equilibrium phases in the Cu–Ni alloys. J Mater Sci 47:360–367. https://doi.org/10.1007/s10853-011-5805-0

    Article  CAS  Google Scholar 

  17. Straumal BB, Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Kogtenkova OA, Kurmanaeva L, Korneva A, Zięba P, Baretzky B (2015) Phase transitions induced by severe plastic deformation: steady-state and equifinality. Int J Mater Res 106:657–664. https://doi.org/10.3139/146.111215

    Article  CAS  Google Scholar 

  18. Kulagin R, Beygelzimer Y, Ivanisenko Yu, Mazilkin A, Straumal B, Hahn H (2018) Instabilities of interfaces between dissimilar metals induced by high pressure torsion. Mater Lett 222:172–175. https://doi.org/10.1016/j.matlet.2018.03.200

    Article  CAS  Google Scholar 

  19. Tirsatine K, Azzeddine H, Huang Y, Baudin T, Helbert A-L, Brisset F, Bradai D, Langdon TG (2018) An EBSD analysis of Fe-36%Ni alloy processed by HPT at ambient and a warm temperature. J Alloys Comp 753:46–53. https://doi.org/10.1016/j.jallcom.2018.04.194

    Article  CAS  Google Scholar 

  20. Edalati K, Horita Z (2011) High-pressure torsion of pure metals: Influence of atomic bond parameters and stacking fault energy on grain size and correlation with hardness. Acta Mater 59:6831–6836. https://doi.org/10.1016/j.actamat.2011.07.046

    Article  CAS  Google Scholar 

  21. Korznikov AV, Ivanisenko YV, Laptionok DV, Safarov IM, Pilyugin VP, Valiev RZ (1994) Influence of severe plastic deformation on structure and phase composition of carbon steel. Nanostruct Mater 4:159–167. https://doi.org/10.1016/0965-9773(94)90075-2

    Article  CAS  Google Scholar 

  22. Ivanisenko Y, Lojkowski W, Valiev RZ, Fecht H-J (2003) Formation of nanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Mater 51:5555–5570. https://doi.org/10.1016/S1359-6454(03)00419-1

    Article  CAS  Google Scholar 

  23. Ivanisenko Y, Wunderlich RK, Valiev RZ, Fecht H-J (2003) Annealing behaviour of nanostructured carbon steel produced by severe plastic deformation. Scripta Mater 49:947–952. https://doi.org/10.1016/S1359-6462(03)00478-0

    Article  CAS  Google Scholar 

  24. Zrnik J, Pippan R, Scheriau S, Kraus L, Fujda M (2010) Microstructure and mechanical properties of UFG medium carbon steel processed by HPT at increased temperature. J Mater Sci 45:4822–4826. https://doi.org/10.1007/s10853-010-4482-8

    Article  CAS  Google Scholar 

  25. Bayramoglu S, Gür CH, Alexandrov IV, Abramova MM (2010) Characterization of ultra-fine grained steel samples produced by high pressure torsion via magnetic Barkhausen noise analysis. Mater Sci Eng A 527:927–933. https://doi.org/10.1016/j.msea.2009.09.006

    Article  CAS  Google Scholar 

  26. Ning J, Courtois-Manara E, Kurmanaeva L, Ganeev AV, Valiev RZ, Kübel C, Ivanisenko Y (2013) Tensile properties and work hardening behaviors of ultrafine grained carbon steel and pure iron processed by warm high pressure torsion. Mater Sci Eng A 581:8–15. https://doi.org/10.1016/j.msea.2013.05.008

    Article  CAS  Google Scholar 

  27. Pippan R, Scheriau S, Taylor A, Hafok M, Hohenwarter A, Bachmaier A (2010) Saturation of fragmentation during severe plastic deformation. Annu Rev Mater Res 40:319–343. https://doi.org/10.1146/annurev-matsci-070909-104445

    Article  CAS  Google Scholar 

  28. Todaka Y, Miki Y, Umemoto M, Wang C, Tsuchiya K (2008) Tensile property of submicrocrystalline pure Fe produced by HPT-straining. Mater Sci Forum 584–586:597–604. https://doi.org/10.4028/www.scientific.net/MSF.584-586.597

    Article  Google Scholar 

  29. Borchers C, Garve C, Tiegel M, Deutges M, Herz A, Edalati K, Pippan R, Horita Z, Kirchheim R (2015) Nanocrystalline steel obtained by mechanical alloying of iron and graphite subsequently compacted by high-pressure torsion. Acta Mater 97:207–215. https://doi.org/10.1016/j.actamat.2015.06.049

    Article  CAS  Google Scholar 

  30. Liao XZ, Kilmametov AR, Valiev RZ, Gao H, Li X, Mukherjee AK, Bingert JF, Zhu YT (2006) High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni. Appl Phys Lett 88:021909. https://doi.org/10.1063/1.2159088

    Article  CAS  Google Scholar 

  31. Wen H, Islamgaliev RK, Nesterov KM, Valiev RZ, Lavernia EJ (2013) Dynamic balance between grain refinement and grain growth during high-pressure torsion of Cu powders. Phil Mag Lett 93:481–489. https://doi.org/10.1080/09500839.2013.805268

    Article  CAS  Google Scholar 

  32. Mazilkin AA, Abrosimova GE, Protasova SG, Straumal BB, Schütz G, Dobatkin SV, Bakai AS (2011) Transmission electron microscopy investigation of boundaries between amorphous “grains” in Ni50Nb20Y30 alloy. J Mater Sci 46:4336–4342. https://doi.org/10.1007/s10853-011-5304-3

    Article  CAS  Google Scholar 

  33. Straumal BB, Mazilkin AA, Protasova SG, Dobatkin SV, Rodin AO, Baretzky B, Goll D, Schütz G (2009) Fe–C nanograined alloys obtained by high pressure torsion: Structure and magnetic properties. Mater Sci Eng A 503:185–189. https://doi.org/10.1016/j.msea.2008.03.052

    Article  CAS  Google Scholar 

  34. Straumal BB, Kilmametov AR, Mazilkin AA, Gornakova AS, Fabrichnaya OB, Kriegel MJ, Rafaja D, Bulatov MF, Nekrasov AN, Baretzky B (2020) The formation of the ω phase in the titanium-iron system under shear deformation. JETP Lett 111:568–574. https://doi.org/10.1134/S0021364020100033

    Article  CAS  Google Scholar 

  35. Edalati K, Akama D, Nishio A, Lee S, Yonenaga Y, Cubero-Sesin JM, Horita Z (2014) Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater 69:68–77. https://doi.org/10.1016/j.actamat.2014.01.036

    Article  CAS  Google Scholar 

  36. Tejedor R, Edalati K, Benito JA, Horita Z, Cabrera JM (2019) High-pressure torsion of iron with various purity levels and validation of Hall-Petch strengthening mechanism. Mater Sci Eng A 743:597–605. https://doi.org/10.1016/j.msea.2018.11.127

    Article  CAS  Google Scholar 

  37. Mohamed IF, Masuda T, Lee S, Edalati K, Horita Z, Hirosawa S, Matsuda K, Terada D, Omar MZ (2017) Strengthening of A2024 alloy by high-pressure torsion and subsequent aging. Mater Sci Eng A 704:112–118. https://doi.org/10.1016/j.msea.2017.07.083

    Article  CAS  Google Scholar 

  38. Edalati K, Shao H, Emami H, Iwaoka H, Akiba E, Horita Z (2016) Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion. Int J Hydr Ener 41:8917–8924. https://doi.org/10.1016/j.ijhydene.2016.03.146

    Article  CAS  Google Scholar 

  39. Isik M, Niinomi M, Cho K, Nakai M, Liu H, Yilmazer H, Horita Z, Sato S, Narushima T (2016) Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion. J Mech Bech Biomed Mater 59:226–235. https://doi.org/10.1016/j.jmbbm.2015.11.015

    Article  CAS  Google Scholar 

  40. Isik M, Niinomi M, Liu H, Cho K, Nakai M, Horita Z, Sato S, Narushima T, Yilmazer H, Nagasako M (2016) Grain refinement mechanism and evolution of dislocation structure of Co–Cr–Mo alloy subjected to high-pressure torsion. Mater Trans 57:1109–1118. https://doi.org/10.2320/matertrans.M2016052

    Article  CAS  Google Scholar 

  41. Hongo T, Edalati K, Iwaoka H, Arita M, Matsuda J, Akiba E, Horita Z (2014) High-pressure torsion of palladium: Hydrogen-induced softening and plasticity in ultrafine grains and hydrogen-induced hardening and embrittlement in coarse grains. Mater Sci Eng A 618:1–8. https://doi.org/10.1016/j.msea.2014.08.074

    Article  CAS  Google Scholar 

  42. Edalati K, Imamura K, Kiss T, Horita Z (2012) Equal-channel angular pressing and high-pressure torsion of pure copper: evolution of electrical conductivity and hardness with strain. Mater Trans 53:123–127. https://doi.org/10.2320/matertrans.MD201109

    Article  CAS  Google Scholar 

  43. Hanna A, Azzeddine H, Lachha R, Baudin T, Helbert A-L, Brisset F, Huang Y, Bradai D, Langdon TG (2019) Evaluating the textural and mechanical properties of an Mg-Dy alloy processed by high-pressure torsion. J Alloys Comp 778:61–71. https://doi.org/10.1016/j.jallcom.2018.11.109

    Article  CAS  Google Scholar 

  44. Bourezg YI, Azzeddine H, Baudin T, Helbert A-L, Huang Y, Bradai D, Langdon TG (2018) Texture and microhardness of Mg-rare earth (Nd and Ce) alloys processed by high-pressure torsion. Mater Sci Eng A 724:477–485. https://doi.org/10.1016/j.msea.2018.03.114

    Article  CAS  Google Scholar 

  45. Bazarnik P, Huang Y, Lewandowska M, Langdon TG (2018) Enhanced grain refinement and microhardness by hybrid processing using hydrostatic extrusion and high-pressure torsion. Mater Sci Eng A 712:513–520. https://doi.org/10.1016/j.msea.2017.12.007

    Article  CAS  Google Scholar 

  46. Cardona DMM, Wongsa-Ngam J, Jimenez H, Langdon TG (2017) Effects on hardness and microstructure of AISI 1020 low-carbon steel processed by high-pressure torsion. J Mater Res Technol 6:355–360. https://doi.org/10.1016/j.jmrt.2017.05.002

    Article  CAS  Google Scholar 

  47. Torbati-Sarraf SA, Sabbaghianrad S, Figueiredo RB, Langdon TG (2017) Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion. J Alloys Compd 712:185–193. https://doi.org/10.1016/j.jallcom.2017.04.054

    Article  CAS  Google Scholar 

  48. Edalati K, Hashiguchi Y, Pereirac PHR, Horita Z, Langdon TG (2018) Effect of temperature rise on microstructural evolution during high-pressure torsion. Mater Sci Eng A 714:167–171. https://doi.org/10.1016/j.msea.2017.12.095

    Article  CAS  Google Scholar 

  49. Permyakova IE, Glezer AM, Savchenko ES, Shchetinin IV (2017) Effect of external actions on magnetic properties and corrosion resistance of Co70.5Fe0.5Cr4Si7B18amorphous alloy. Bull Russ Acad Sci Phys 81:1310–1316. https://doi.org/10.3103/S1062873817110144

    Article  CAS  Google Scholar 

  50. Shurygina NA, Glezer AM, Permyakova IE, Blinova EN (2012) Effect of nanocrystallization on the mechanical and magnetic properties of Finemet-type alloy (Fe78.5Si13.5B9Nb3Cu). Bull Russ Acad Sci Phys 76:44–50. https://doi.org/10.3103/S1062873812010261

    Article  CAS  Google Scholar 

  51. Straumal BB, Kulagin R, Klinger L, Rabkin E, Straumal PB, Kogtenkova OA, Baretzky B (2022) Structure refinement and fragmentation of precipitates under severe plastic deformation: A review. Materials 15:601. https://doi.org/10.3390/ma15020601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sabirov I, Pippan R (2005) Formation of a W–25%Cu nanocomposite during high pressure torsion. Scr Mater 52:1293–1298. https://doi.org/10.1016/j.scriptamat.2005.02.017

    Article  CAS  Google Scholar 

  53. Sabirov I, Pippan R (2007) Characterization of tungsten fragmentation in a W–25%Cu composite after high-pressure torsion. Mater Charact 58:848–853. https://doi.org/10.1016/j.matchar.2006.08.001

    Article  CAS  Google Scholar 

  54. Bachmaier A, Schmauch J, Aboulfadl H, Verch A, Motz C (2016) On the process of co-deformation and phase dissolution in a hard-soft immiscible Cu-Co alloy system during high-pressure torsion deformation. Acta Mater 115:333–346. https://doi.org/10.1016/j.actamat.2016.06.010

    Article  CAS  Google Scholar 

  55. Bachmaier A, Aboulfadl H, Pfaff M, Mücklich F, Motz C (2015) Structural evolution and strain induced mixing in Cu-Co composites studied by transmission electron microscopy and atom probe tomography. Mater Charact 100:178–191. https://doi.org/10.1016/j.matchar.2014.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bachmaier A, Rathmayr GB, Bartosik M, Apel D, Zhang Z, Pippan R (2014) New insights on the formation of supersaturated solid solutions in the Cu–Cr system deformed by high-pressure torsion. Acta Mater 69:301–313. https://doi.org/10.1016/j.actamat.2014.02.003

    Article  Google Scholar 

  57. Hosseini M, Pardis N, Manesh HD, Abbasi M, Kimb D-I (2017) Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB). Mater Design 113:128–136. https://doi.org/10.1016/j.matdes.2016.09.094

    Article  CAS  Google Scholar 

  58. Cubero-Sesin JM, Horita Z (2012) Strengthening via microstructure refinement in bulk Al – 4 mass.% Fe alloy using high-pressure torsion. Mater Trans 53:46–55. https://doi.org/10.2320/matertrans.MD201127

    Article  CAS  Google Scholar 

  59. Straumal BB, Gornakova AS, Mazilkin AA, Fabrichnaya OB, Kriegel MJ, Baretzky B, Jiang J-Z, Dobatkin SV (2012) Phase transformations in the severely plastically deformed Zr–Nb alloys. Mater Lett 81:225–228. https://doi.org/10.1016/j/matlet.2012.04.153

    Article  CAS  Google Scholar 

  60. Straumal BB, Kilmametov AR, Korneva A, Mazilkin AA, Straumal PB, Zięba P, Baretzky B (2017) Phase transitions in Cu-based alloys under high pressure torsion. J Alloys Comp 707:20–26. https://doi.org/10.1016/j.jallcom.2016.12.057

    Article  CAS  Google Scholar 

  61. Straumal BB, Pontikis V, Kilmametov AR, Mazilkin AA, Dobatkin SV, Baretzky B (2017) Competition between precipitation and dissolution in Cu–Ag alloys under high pressure torsion. Acta Mater 122:60–71. https://doi.org/10.1016/j.actamat.2016.09.024

    Article  CAS  Google Scholar 

  62. Straumal BB, Kilmametov AR, Baretzky B, Kogtenkova OA, Straumal PB, Lityńska-Dobrzyńska L, Chulist R, Korneva A, Zięba P (2020) High pressure torsion of Cu–Ag and Cu–Sn alloys: limits for solubility and dissolution. Acta Mater 195:184–198. https://doi.org/10.1016/j.actamat.2020.05.055

    Article  CAS  Google Scholar 

  63. Straumal BB, Kilmametov AR, Ivanisenko Yu, Mazilkin AA, Valiev RZ, Afonikova NS, Gornakova AS, Hahn H (2018) Diffusive and displacive phase transitions in Ti–Fe and Ti–Co alloys under high pressure torsion. J Alloys Comp 735:2281–2286. https://doi.org/10.1016/j.jallcom.2017.11.317

    Article  CAS  Google Scholar 

  64. Gunderov DV, Asfandiyarov RN, Astanin VV, Sharafutdinov AV (2023) Slippage during high-pressure torsion: accumulative high-pressure torsion—overview of the latest results. Metals 13:1340. https://doi.org/10.3390/met13081340

    Article  CAS  Google Scholar 

  65. Beygelzimer Y, Estrin Y, Davydenko O, Kulagin R (2023) Gripping prospective of non-shear flows under high-pressure torsion. Materials 16:823. https://doi.org/10.3390/ma16020823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Verleysen P, Lanjewar H (2020) Dynamic high pressure torsion: A novel technique for dynamic severe plastic deformation. J Mater Proc Technol 276:116393. https://doi.org/10.1016/j.jmatprotec.2019.116393

    Article  CAS  Google Scholar 

  67. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Cryst 43:1126–1128. https://doi.org/10.1107/S002188981003049

    Article  CAS  Google Scholar 

  68. Oberdorfer B, Steyskal E-M, Sprengel W, Puff W, Zehetbauer M, Pippan R, Wuerschum R (2010) In situ probing of fast defect annealing in Cu and Ni with a high intensity positron beam. Phys Rev Lett 105:146101. https://doi.org/10.1103/PhysRevLett.105.146101

    Article  CAS  PubMed  Google Scholar 

  69. Oberdorfer B, Setman D, Steyskal E-M, Hohenwarter A, Sprengel W, Zehetbauer M, Pippan R, Würschum R (2014) Grain boundary excess volume and defect annealing of copper after high-pressure torsion. Acta Mater 68:189–195. https://doi.org/10.1016/j.actamat.2013.12.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cízek J, Melikhova O, Barnovská Z, Procházka I, Islamgaliev RK (2013) Vacancy clusters in ultra fine grained metals prepared by severe plastic deformation. J Phys Conf Ser 443:012008. https://doi.org/10.1088/1742-6596/443/1/012008

    Article  Google Scholar 

Download references

Acknowledgements

The state task of the Baikov Institute of Metallurgy and Materials Science RAS (no. 075-01176-23-00) and of the Osipyan Institute of Solid State Physics RAS are acknowledged. The authors thank Prof. Ruslan Valiev and Dr. Yulia Ivanisenko for stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, B.S. and A.K.; methodology, A.K. and A.M.; validation, P.S.; formal analysis, P.S. and A.M.; investigation, B.S., A.K. and A.M.; resources, B.S.; data curation, P.S., A.K. and A.M.; writing—original draft preparation, B.S., A.K.; writing—review and editing, B.S., P.S., A.K. and A.M.; visualization, A.M.; supervision, B.S., A.M.; project administration, B.S.; funding acquisition, B.S. and P.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to B. B. Straumal.

Ethics declarations

Conflict of interests or competing interests

No conflict of interests or competing interests exist.

Additional information

Handling Editor: Megumi Kawasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Straumal, B.B., Kilmametov, A.R., Straumal, P.B. et al. Decrease of steady-state solubility of Ag in Cu by high-pressure torsion at low temperature. J Mater Sci 59, 5818–5830 (2024). https://doi.org/10.1007/s10853-023-09328-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09328-z

Navigation