Skip to main content
Log in

Investigating the mechanism of zinc-induced liquid metal embrittlement crack initiation in austenitic microstructure

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Catastrophic brittle failure of ductile materials by liquid metal embrittlement (LME) is a widely documented phenomenon but the fundamentals of its initiation mechanism are poorly understood. The widespread use of Zn-coated advanced high strength steels in the automotive industry has been plagued by Zn-induced LME which is frequently observed in high-temperature forming and welding applications. In this study, numerical modeling and an atomic-scale experimental investigation are used in order to gain insight into the atomistic events that lead to the onset of LME cracking. The results showed that the formation of a stress-induced diffusion wedge (SIDW) at the exposed grain boundary (GB) due to the interdiffusion of Zn-embrittler atoms was the trigger for LME. The formation of the SIDW facilitated the diffusion of the Zn-embrittler atoms into the GBs, which compromised their mechanical integrity. The results show that LME initiation entails several steps: (i) solid-state GB diffusion, (ii) formation of the SIDW, (iii) eventual melting of the SIDW, and (iv) opening of the liquid wedge due to interdiffusion and the application of externally applied stresses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data and code availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also from a part of an ongoing study.

References

  1. Scheiber D, Prabitz K, Romaner L, Ecker W (2020) The influence of alloying on Zn liquid metal embrittlement in steels. Acta Mater 195:750–760. https://doi.org/10.1016/j.actamat.2020.06.001

    Article  CAS  Google Scholar 

  2. Razmpoosh MH, DiGiovanni C, Zhou YN, Biro E (2021) Pathway to understand liquid metal embrittlement (LME) in Fe–Zn couple: from fundamentals toward application. Prog Mater Sci 121:100798. https://doi.org/10.1016/j.pmatsci.2021.100798

    Article  CAS  Google Scholar 

  3. Razmpoosh MH, Langelier B, Marzbanrad E, Zurob HS, Zhou N, Biro E (2021) Atomic-scale investigation of liquid-metal-embrittlement crack-path : revealing mechanism and role of grain boundary chemistry. Acta Mater 204:116519. https://doi.org/10.1016/j.actamat.2020.116519

    Article  CAS  Google Scholar 

  4. Ghatei-Kalashami A, Khan MS, Lee MY, Zhou YN (2022) High-temperature phase evolution of the ZnAlMg coating and its effect on mitigating liquid-metal-embrittlement cracking. Acta Mater 229:117836. https://doi.org/10.1016/j.actamat.2022.117836

    Article  CAS  Google Scholar 

  5. Ghatei-Kalashami A, Ghassemali E, Digiovanni C, Goodwin F, Zhou NY (2021) Occurrence of liquid-metal-embrittlement in a fully ferritic microstructure. Materialia. https://doi.org/10.1016/j.mtla.2021.101036

    Article  Google Scholar 

  6. DiGiovanni C, GhateiKalashami A, Biro E, Zhou NY (2021) Liquid metal embrittlement transport mechanism in the Fe/Zn system: stress-assisted diffusion. Materialia 18:101153. https://doi.org/10.1016/j.mtla.2021.101153

    Article  CAS  Google Scholar 

  7. Qi X, Du L, Dong Y, Misra RDK, Du Y, Wu H, Gao X (2019) Fracture toughness behavior of low-C medium-Mn high-strength steel with submicron-scale laminated microstructure of tempered martensite and reversed austenite. J Mater Sci 54:12095–12105. https://doi.org/10.1007/s10853-019-03776-2

    Article  CAS  Google Scholar 

  8. Shehryar Khan M, Ghatei-Kalashami A, Wang X, Biro E, Zhou YN (2022) Refining the hierarchical structure of lath martensitic steel by in situ alloying with nickel: morphology, crystallography, and mechanical properties. J Mater Sci 57:20867–20894. https://doi.org/10.1007/s10853-022-07916-z

    Article  CAS  Google Scholar 

  9. Romano-Acosta LF, García-Rincon O, Pedraza JP, Palmiere EJ (2021) Influence of thermomechanical processing parameters on critical temperatures to develop an advanced high-strength steel microstructure. J Mater Sci 56:18710–18721. https://doi.org/10.1007/s10853-021-06444-6

    Article  CAS  Google Scholar 

  10. Ghatei-Kalashami A, Zhang S, Shojaee M, Midawi ARH, Goodwin F, Zhou NY (2022) Failure behavior of resistance spot welded advanced high strength steel: the role of surface condition and initial microstructure. J Mater Process Technol 299:117370. https://doi.org/10.1016/j.jmatprotec.2021.117370

    Article  CAS  Google Scholar 

  11. GhateiKalashami A, Han X, Goodwin F, Zhou NY (2020) The influence of modified annealing during the galvanizing process on the resistance spot welding of the CMn1.8Si advanced high strength steel. Coat Technol Surf. https://doi.org/10.1016/j.surfcoat.2019.125181

    Article  Google Scholar 

  12. Gordon P, An HH (1982) The mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals. Metall Trans A 13:457–472

    Article  Google Scholar 

  13. Gong X, Short MP, Auger T, Charalampopoulou E, Lambrinou K (2022) Environmental degradation of structural materials in liquid lead- and lead-bismuth eutectic-cooled reactors. Prog Mater Sci 126:100920. https://doi.org/10.1016/j.pmatsci.2022.100920

    Article  CAS  Google Scholar 

  14. Kang H, Cho L, Lee C, DeCooman BC (2016) Zn penetration in liquid metal embrittled TWIP Steel. Metall Mater Trans A Phys Metall Mater Sci 47:2885–2905. https://doi.org/10.1007/s11661-016-3475-x

    Article  CAS  Google Scholar 

  15. Lynch SP (1988) Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process. Acta Metall 36:2639–2661

    Article  CAS  Google Scholar 

  16. Nicholas MGG, Old CFF, Division MD (1979) Review liquid metal embrittlement. J Mater Sci 14:1–18. https://doi.org/10.1007/BF01028323

    Article  CAS  Google Scholar 

  17. A.R.C. Westwood, M.H. Kamdar (2006) Concerning liquid metal embrittlement , particularly of zinc monocrystals by mercury . https://doi.org/10.1080/14786436308213836.

  18. Stoloff NS, Johnston TL (1963) Crack propagation in a liquid metal environment. Acta Metall 11:251–256

    Article  CAS  Google Scholar 

  19. Razmpoosh MH, Macwan A, Goodwin F, Biro E, Zhou Y (2020) Role of random and coincidence site lattice grain boundaries in liquid metal embrittlement of iron ( FCC ) -Zn couple. Metall Mater Trans A 51:3938–3944. https://doi.org/10.1007/s11661-020-05857-3

    Article  CAS  Google Scholar 

  20. Lee H, Jo MC, Sohn SS, Kim SH, Song T, Kim SK, Kim HS, Kim NJ, Lee S (2019) Microstructural evolution of liquid metal embrittlement in resistance-spot-welded galvanized TWinning-Induced Plasticity (TWIP) steel sheets. Mater Charact 147:233–241. https://doi.org/10.1016/j.matchar.2018.11.008

    Article  CAS  Google Scholar 

  21. Murugan SP, Jeon JB, Ji C, Park Y (2020) Liquid zinc penetration induced intergranular brittle cracking in resistance spot welding of galvannealed advanced high strength steel. Weld Word 64:1957–1969

    Article  CAS  Google Scholar 

  22. Klinger L, Rabkin E (2007) The effect of stress on grain boundary interdiffusion in a semi-infinite bicrystal. Acta Mater 55:4689–4698. https://doi.org/10.1016/j.actamat.2007.04.039

    Article  CAS  Google Scholar 

  23. Klinger L, Rabkin E (2011) Theory of the Kirkendall effect during grain boundary interdiffusion. Acta Mater 59:1389–1399. https://doi.org/10.1016/j.actamat.2010.10.070

    Article  CAS  Google Scholar 

  24. Ghatei-kalashami A, Khan MS, Goodwin F, Zhou YN (2023) Investigating zinc-assisted liquid metal embrittlement in ferritic and austenitic steels : correlation between crack susceptibility and failure mechanism. Mater Charact 195:112502. https://doi.org/10.1016/j.matchar.2022.112502

    Article  CAS  Google Scholar 

  25. Ghatei-Kalashami A, Ghassemali E, Digiovanni C, Goodwin F, Zhou N (2022) Liquid metal embrittlement cracking behavior in iron-zinc (Fe/Zn) couple: comparison of ferritic and austenitic microstructures. Mater Lett 324:132780. https://doi.org/10.1016/j.matlet.2022.132780

    Article  CAS  Google Scholar 

  26. Mainprice D, Bachmann F, Hielscher R, Schaeben H (2015) Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geol Soc Spec Publ 409:251–271. https://doi.org/10.1144/SP409.8

    Article  Google Scholar 

  27. Gao H, Zhang L, Nix WD, Thompson CV, Arzt E (1999) Crack-like grain-boundary diffusion wedges in thin metal films. Acta Mater 47:2865–2878. https://doi.org/10.1016/S1359-6454(99)00178-0

    Article  CAS  Google Scholar 

  28. Bhandakkar TK, Chason E, Gao H (2009) Formation of crack-like diffusion wedges and compressive stress evolution during thin film growth with inhomogeneous grain boundary diffusivity. Int J Appl Mech 1:1–19. https://doi.org/10.1142/S1758825109000071

    Article  Google Scholar 

  29. Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445. https://doi.org/10.1063/1.1699681

    Article  Google Scholar 

  30. Nzogang BC, Bouquerel J, Cordier P, Mussi A, Girard J, Karato S (2018) Characterization by scanning precession electron diffraction of an aggregate of bridgmanite and ferropericlase deformed at HP-HT, geochemistry. Geophys Geosystems 19:582–594. https://doi.org/10.1002/2017GC007244

    Article  CAS  Google Scholar 

  31. Ludwig W, Pereiro-López E, Bellet D (2005) In situ investigation of liquid Ga penetration in Al bicrystal grain boundaries: grain boundary wetting or liquid metal embrittlement? Acta Mater 53:151–162. https://doi.org/10.1016/j.actamat.2004.09.012

    Article  CAS  Google Scholar 

  32. Nam HS, Srolovitz DJ (2007) Molecular dynamics simulation of Ga penetration along grain boundaries in Al: a dislocation climb mechanism. Phys Rev Lett 99:1–4. https://doi.org/10.1103/PhysRevLett.99.025501

    Article  CAS  Google Scholar 

  33. Nam HS, Srolovitz DJ (2009) Effect of material properties on liquid metal embrittlement in the Al-Ga system. Acta Mater 57:1546–1553. https://doi.org/10.1016/j.actamat.2008.11.041

    Article  CAS  Google Scholar 

  34. Lu N, Moniri S, Wiltse MR, Spielman J, Senabulya N, Shahani AJ (2021) Dynamics of Ga penetration in textured Al polycrystal revealed through multimodal three-dimensional analysis. Acta Mater 217:23–26. https://doi.org/10.1016/j.actamat.2021.117145

    Article  CAS  Google Scholar 

  35. Glickman EE (2003) Grain boundary grooving accelerated by local plasticity as a possible mechanism of liquid metal embrittlement. Interface Sci 11:451–459

    Article  Google Scholar 

  36. Sigle W, Richter G, Rühle M, Schmidt S (2006) Insight into the atomic-scale mechanism of liquid metal embrittlement. Appl Phys Lett 89:87–90. https://doi.org/10.1063/1.2356322

    Article  CAS  Google Scholar 

  37. Sage D, Fink C (2022) Understanding temperature and dwell time dependence of liquid metal embrittlement in austenitic stainless steel by liquid zinc and copper. Materialia 24:101502. https://doi.org/10.1016/j.mtla.2022.101502

    Article  CAS  Google Scholar 

  38. Dohie JS, Cahoon JR, Caley WF (2007) The grain-boundary diffusion of Zn in α-Fe. J Phase Equilibria Diffus 28:322–327. https://doi.org/10.1007/s11669-007-9093-y

    Article  CAS  Google Scholar 

  39. Fisher JC (1951) Calculation of diffusion penetration curves for surface and grain boundary diffusion. J Appl Phys 22:74–77. https://doi.org/10.1063/1.1699825

    Article  CAS  Google Scholar 

  40. Stephenson GB (1988) Deformation during interdiffusion. Acta Metall 36:2663–2683. https://doi.org/10.1016/0001-6160(88)90114-9

    Article  CAS  Google Scholar 

  41. Kolobov YR, Grabovetskaya GP, Ratochka IV, Ivanov KV (1999) Diffusion—induced creep of polycrystalline and nanostructured metals. Nanostructured Mater 12:1127–1130

    Article  Google Scholar 

  42. Daruka I, Szabó IA, Beke DL, Cserháti C, Kodentsov A, Van Loo FJJ (1996) Diffusion-induced bending of thin sheet couples: theory and experiments in Ti-Zr system. Acta Mater 44:4981–4993. https://doi.org/10.1016/S1359-6454(96)00099-7

    Article  CAS  Google Scholar 

  43. Genin FY, Mullins WW, Wynblatt P (1993) The effect of stress on grain boundary grooving. Acta Metall Mater 41:3541–3547

    Article  CAS  Google Scholar 

  44. Chakraborty J (2005) Diffusion in stressed thin films. PhD dissertation, Stuttgart, Max Planck Institut Fur Metallforschung

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chairs (CRC) program, American Welding Society (AWS), and the International Zinc Association (Durham, NC, USA) for their financial support and providing material to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

AGK performed conceptualization, methodology, formal analysis, investigation, writing - original draft, writing - review, and editing and prepared the manuscript and all associated sections. MSK provided revisions and edits to the manuscript and contributed to the discussion. FG contributed as an industrial supervisor, provided research materials, financial support, and feedback, and contributed to manuscript revisions. NYZ supervised the progress of the research program, advised on the direction of the research, provided financial support, and reviewed and edited the manuscript.

Corresponding author

Correspondence to Ali Ghatei-Kalashami.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The chemical potential gradient is considered the driving force for governing the grain boundary diffusion equations.

$${\mu }^{i}-{\mu }^{0}=kTln {a}^{i}$$
(A1)

In the case of applied tensile stress \((\sigma )\), the cal potential of any atom of volume \(\Omega\) would be changed as [43]:

$${\mu }^{i}-{\mu }^{0}=kTln {a}^{i}+\sigma \Omega$$
(A2)

Considering the activity coefficient, \({\gamma }_{i}= \frac{{a}_{i}}{{C}_{i}}\) where \({C}_{i}\) is the concentration and substituting in Eq. (A2):

$${J}_{i}\propto \frac{\partial {\mu }_{i}}{\partial y}$$
(A3)
$${J}_{i}= -\frac{\delta {D}_{gb}}{kT}{C}_{i}\frac{\partial \mu }{\partial y}=-\frac{{\delta D}_{gb}}{kT} {C}_{i}\frac{\partial }{\partial y} ({\mu }^{0}+kTln ({\gamma }_{i}{C}_{i})+\sigma \Omega )$$
(A4)

where \({D}_{gb}\) and \(\delta\) are GB diffusivity and thickness of GB, respectively. It has been assumed that the activity coefficient and atomic volume do not depend on stress or concentration, i.e.:

$${{{\gamma}}}_{{{i}}}\,{{o}}{{r}}\,{\Omega }\ne {{f}}\left({{{C}}}_{{{i}}},{{\sigma}}\right)\ne {{f}}\left({{x}},{{t}}\right)$$
(A5)

Differentiating the second part in the bracket of the right-hand side of Eq. (A4) gives the following equation:

$$\frac{\partial {\mu }_{i}}{\partial y}=kT{\eta }_{i}\frac{1}{{C}_{i}}\frac{\partial {C}_{i}}{\partial y}+\Omega \frac{\partial \sigma }{\partial y}$$
(A6)

where \({\eta }_{i}=\left(1+\frac{\partial ln{\gamma }_{i}}{\partial ln{C}_{i}}\right)\) is the thermodynamic factor [44]. Therefore, the flux equation in the presence of tensile stress can be described by the following equation:

$${J}_{i}= {-\delta {\eta }_{i}D}_{gb}\frac{\partial {C}_{i}}{\partial y}-\frac{\delta {D}_{gb}\Omega }{kT}{C}_{i} \frac{\partial \sigma }{\partial y}$$
(A7)

Based on the Gibbs–Duhem relationship, the thermodynamic factor for both chemical species is the same [44]:

$${\eta }_{Fe}={\eta }_{Zn}=\eta$$
(A8)

The thermodynamic factor is different in each binary system and depends on the composition and temperature. It is known that \(\eta >1\) for systems with a negative heat of mixing and \(\eta <1\) for the ones with positive heat mixing. The \(\eta\) can be calculated using thermodynamic data. For simplicity, the thermodynamic factor has been taken as a constant equal to 1.0. It should be noted that this assumption will not affect the concentration profiles [44]. Therefore, the atomic fluxes along with grain boundary associated with the diffusion of Zn atoms into Fe-substrate (\({J}_{Zn}\)) and the diffusion of Fe-atom toward zinc layer (\({J}_{Fe}\)) can be represented as:

$${J}_{Zn}= -\updelta {D}_{gb}^{Zn}\frac{\partial {C}_{gb}^{Zn}}{\partial y}-\frac{{\Omega\updelta D}_{gb}^{Zn}}{kT}{C}_{gb}^{Zn} \frac{\partial \sigma }{\partial y}$$
(A9)
$${J}_{Fe}= -\updelta {D}_{gb}^{Fe}\frac{\partial {C}_{gb}^{Fe}}{\partial y}-\frac{{\Omega\updelta D}_{gb}^{Fe}}{kT}{C}_{gb}^{Fe} \frac{\partial \sigma }{\partial y}$$
(A10)

where \({D}_{gb}^{Zn}\) and \({D}_{gb}^{Fe}\) are grain boundary diffusivities of Zn and Fe atoms, respectively. In this model, the dependence of grain boundary diffusivities on pressure (\(p\)) and concentration is neglected, e.g.:

$$\frac{\partial D(\sigma )}{\partial p}\equiv 0$$
(A11)
$$\frac{\partial D(C)}{\partial C}\equiv 0$$
(A12)

Fick’s second law can be written down as follows:

$$\frac{\partial {C}_{i}}{\partial t}= -\frac{\partial {J}_{i}}{\partial y}$$
(A13)
$$\frac{\partial {C}_{gb}^{i}}{\partial t}= {\updelta D}_{gb}^{i}\frac{{\partial }^{2}{C}_{gb}^{i}}{\partial {y}^{2}}+\frac{\Omega {\updelta D}_{gb}^{i}}{kT}\frac{\partial }{\partial y} \left({C}_{gb}^{i}\frac{\partial \sigma }{\partial y}\right),\quad i={\rm Zn} \,{\rm and}\, {\rm Fe}$$
(A14)
$$\frac{\partial {C}_{gb}^{i}}{\partial t}={\updelta D}_{gb}^{i}\frac{{\partial }^{2}{C}_{gb}^{i}}{\partial {y}^{2}}+\frac{{\Omega\updelta D}_{gb}^{i}}{kT}\frac{\partial {C}_{gb}^{i}}{\partial y}\frac{\partial \sigma }{\partial y}+\frac{{\Omega\updelta D}_{gb}^{i}}{kT}{C}_{gb}^{i}\frac{{\partial }^{2}\sigma }{\partial {y}^{2}} ,\quad i={\rm Zn} \,and \,{\rm Fe}$$
(A15)

The stress profile along GB, \(\sigma (y,t)\), can be represented as:

$${\sigma }_{gb} \left(y,t\right)= {E}^{*}{\int }_{0}^{\infty }K (y,x)\frac{\partial w(x,t)}{\partial x}dx$$
(A16)
$$\left(y,z\right)= \frac{1}{y-z}-\frac{1}{y+z}- \frac{2z(y-z)}{{\left(y+z\right)}^{3}}$$
(A17)
$${E}^{*}=\frac{E}{2\pi (1-{\nu }^{2})}$$
(A18)

It should be noted that the presence of SIDW with the width of \(w (x, y)\) must be considered in the continuity equation. Therefore, Eq. (A13) is rewritten as:

$$\frac{\partial {C}_{i}}{\partial t}= -\frac{\partial {J}_{i}}{\partial y}-{C}_{i}^{gb}\frac{\partial w}{\partial t}$$
(A19)

where the second term of RHS of Eq. (A19) describes the role of the SIDW dimension on the diffusion flux. Therefore, Eq. (A15) is written as:

$$\begin{aligned}&\frac{{\partial C_{gb}^{Zn} }}{\partial t} = {\updelta }D_{gb}^{Zn} \frac{{\partial^{2} C_{gb}^{Zn} }}{{\partial y^{2} }} + \frac{{\Omega {\updelta }D_{gb}^{Zn} }}{kT}\frac{{\partial C_{gb}^{Zn} }}{\partial y}\frac{\partial \sigma }{{\partial y}} + \frac{{\Omega {\updelta }D_{gb}^{Zn} }}{kT}C_{gb}^{Zn} \frac{{\partial^{2} \sigma }}{{\partial y^{2} }}\\ &\quad- C_{gb}^{Zn} \frac{\partial w}{{\partial t}} \quad \quad \frac{{\partial w \left( {x,y} \right)}}{\partial t} > 0 \end{aligned}$$
(A20)
$$\begin{aligned}\frac{{\partial C_{gb}^{Fe} }}{\partial t} = {\updelta }D_{gb}^{Fe} \frac{{\partial^{2} C_{gb}^{Fe} }}{{\partial y^{2} }} + \frac{{\Omega {\updelta }D_{gb}^{Fe} }}{kT}\frac{{\partial C_{gb}^{Fe} }}{\partial y}\frac{\partial \sigma }{{\partial y}} + \frac{{\Omega {\updelta }D_{gb}^{Fe} }}{kT}C_{gb}^{Fe} \frac{{\partial^{2} \sigma }}{{\partial y^{2} }}\\&\quad - C_{gb}^{Fe} \frac{\partial w}{{\partial t}} \quad \quad \frac{{\partial w \left( {x,y} \right)}}{\partial t} > 0 \end{aligned}$$
(A21)

Assuming \({C}_{gb}^{Zn}+ {C}_{gb}^{Fe}=1\), Eq. (A21) can be rewritten as the following equations:

$$\frac{\partial }{{\partial t}}\left( {1 - ~C_{{{\text{gb}}}}^{{{\text{Zn}}}} } \right) = \delta D_{{{\text{gb}}}}^{{{\text{Fe}}}} \frac{{\partial ^{2} }}{{\partial y^{2} }}\left( {1 - ~C_{{{\text{gb}}}}^{{{\text{Zn}}}} } \right) + \frac{{\Omega \delta D_{{{\text{gb}}}}^{{{\text{Fe}}}} }}{{kT}}\frac{\partial }{{\partial y}}\left( {1 - ~C_{{{\text{gb}}}}^{{{\text{Zn}}}} } \right)\frac{{\partial \sigma }}{{\partial y}} + \frac{{\Omega \delta D_{{{\text{gb}}}}^{{{\text{Fe}}}} \left( {1 - ~C_{{{\text{gb}}}}^{{{\text{Zn}}}} } \right)}}{{kT}}\frac{{\partial ^{2} \sigma }}{{\partial y^{2} }} - \left( {1 - ~C_{{{\text{gb}}}}^{{{\text{Zn}}}} } \right)\frac{{\partial w~\left( {y,z} \right)}}{{\partial t}}$$
(A22)
$$\begin{aligned}&\frac{\partial {C}_{gb}^{Zn}}{\partial t}=\updelta {D}_{gb}^{Fe}\frac{{\partial }^{2}{C}_{gb}^{Zn}}{\partial {y}^{2}}+\frac{\Omega\updelta {D}_{gb}^{Fe}}{kT}\frac{\partial {C}_{gb}^{Zn}}{\partial y}\frac{\partial \sigma }{\partial y}\\& \quad-\frac{{\Omega\updelta D}_{gb}^{Fe}\left(1- {C}_{gb}^{Zn}\right)}{kT}\frac{{\partial }^{2}\sigma }{\partial {y}^{2}}+\frac{\partial w }{\partial t}-{\frac{\partial w}{\partial t}C}_{gb}^{Zn}\end{aligned}$$
(A23)

Combining Eq. 19 and Eq. 23 yields the following equation:

$$\begin{aligned}&\frac{\partial w \left(y,z\right)}{\partial t}=\updelta \frac{{\partial }^{2}{C}_{gb}^{Zn}}{\partial {y}^{2}} \left({D}_{gb}^{Zn}-{D}_{gb}^{Fe}\right)\\&\quad+\frac{\Omega\updelta }{kT}\frac{\partial {C}_{gb}^{Zn}}{\partial y}\frac{\partial \sigma }{\partial y}\left({D}_{gb}^{Zn}-{D}_{gb}^{Fe}\right)\\&\quad+\frac{\Omega\updelta }{kT}\frac{{\partial }^{2}\sigma }{\partial {y}^{2}}({D}_{gb}^{Zn}{C}_{gb}^{Zn}+{D}_{gb}^{Fe}{C}_{gb}^{Fe})\end{aligned}$$
(A24)

Equation (A24) illustrates the instantaneous dimension of the extra wedge material. Substituting Eq. (A24) into Eq. (A19) yields the following equation:

$$\frac{\partial {C}_{gb}^{Zn}}{\partial t}= \left({D}_{gb}^{Zn}{C}_{gb}^{Fe}+{D}_{gb}^{Fe}{C}_{gb}^{Zn}\right)\frac{{\partial }^{2}{C}_{gb}^{Zn}}{\partial {y}^{2}}+\frac{\Omega \left({D}_{gb}^{Zn}{C}_{gb}^{Fe}{+D}_{gb}^{Fe}{C}_{gb}^{Zn} \right)}{kT}\frac{\partial {C}_{gb}^{Zn}}{\partial y}\frac{\partial \sigma }{\partial y}+\frac{\Omega {C}_{gb}^{Zn}{C}_{gb}^{Fe}\left({D}_{gb}^{Zn}- {D}_{gb}^{Fe}\right)}{kT}\frac{{\partial }^{2}\sigma }{\partial {y}^{2}}$$
(A25)

Appendix B

The finite difference method (FDM) was employed to solve Eqs. 9 (a)-(c). First, \({C}_{i,j}\) is expanded in T direction while \({X}_{i}=i\Delta\) keeps constant.

$${C}_{i,j+1}={C}_{i,j}+\delta T{\left(\frac{\partial C}{\partial T}\right)}_{i,j}+\frac{{\left(\frac{{\partial }^{2}C}{\partial {T}^{2}}\right)}_{i,j}}{2!}{(\delta T)}^{2}+\frac{{\left(\frac{{\partial }^{3}C}{\partial {T}^{2}}\right)}_{i,j}}{3!}{(\delta T)}^{3}+\dots$$
(B1)

With neglecting the higher-order terms, Eq. (B1) can be written as:

$${\left(\frac{\partial C}{\partial T}\right)}_{i,j}=\frac{{C}_{i,j+1}-{C}_{i,j}}{\delta T}$$
(B2)

Similarly, Taylor’s series is applied for the \({C}_{i,j}\) in X direction while \({T}_{j}=j\Delta\) keep constant.

$${C}_{i-1,j}={C}_{i,j}-\delta X{\left(\frac{\partial C}{\partial X}\right)}_{i,j}+\frac{{\left(\frac{{\partial }^{2}C}{\partial {X}^{2}}\right)}_{i,j}}{2!}{(\delta X)}^{2}+\frac{{\left(\frac{{\partial }^{3}C}{\partial {X}^{2}}\right)}_{i,j}}{3!}{(\delta X)}^{3}+\dots$$
(B3)
$${C}_{i+1,j}={C}_{i,j}+\delta X{\left(\frac{\partial C}{\partial X}\right)}_{i,j}+\frac{{\left(\frac{{\partial }^{2}C}{\partial {X}^{2}}\right)}_{i,j}}{2!}{(\delta X)}^{2}+\frac{{\left(\frac{{\partial }^{3}C}{\partial {X}^{2}}\right)}_{i,j}}{3!}{(\delta X)}^{3}+\dots$$
(B4)

Combining Eq. (B3) and Eq. (B4) with neglecting higher orders yields the following set of equations:

$$\frac{{C}_{i-1,j}+{C}_{i+1,j}-2{C}_{i,j}}{{(\delta X)}^{2}}={\left(\frac{{\partial }^{2}C}{\partial {X}^{2}}\right)}_{i,j}$$
(B5)
$$\frac{{C}_{i-1,j}-{C}_{i+1,j}}{\delta X}={\left(\frac{\partial C}{\partial X}\right)}_{i,j}$$
(B6)

By substituting Eqs. (B5) and (B6) into Eqs. 9 (a)-(b) the following equations are obtained:

$$\frac{\partial {{W}}_{{i}} }{\partial {T}}= \left(1-\uptheta \right){({C}}_{{i}+1}-2{{C}}_{{i}}+ {{C}}_{{i}-1})+0.25\left(1-\uptheta \right)\left({{C}}_{{i}+1}- {{C}}_{{i}-1}\right)\left({{S}}_{{i}+1}- {{S}}_{{i}-1}\right)+({{C}}_{{i}}+\uptheta (1-{{C}}_{{i}})){({S}}_{{i}+1}-2{{S}}_{{i}}+ {{S}}_{{i}-1})$$
(B7)
$$\frac{\partial {{C}}_{{i}}}{\partial {T}}= \left[(\theta {{C}}_{{i}}+\left(1-{{C}}_{{i}}\right)){({C}}_{{i}+1}-2{{C}}_{{i}}+ {{C}}_{{i}-1})\right]+0.25\left[(\theta {{C}}_{{i}}+\left(1-{{C}}_{{i}}\right))({{C}}_{{i}+1}- {{C}}_{{i}-1})({{S}}_{{i}+1}- {{S}}_{{i}-1})\right]+\left[{{C}}_{{i}}(1-{{C}}_{{i}})\left(1-\uptheta \right){({S}}_{{i}+1}-2{{S}}_{{i}}+ {{S}}_{{i}-1})\right]$$
(B8)

As mentioned by Klinger and Rabkin [23], for solving Eq. 9 (c), the entire intergro-differentiate equation is discretized using a uniform grid \({{X}}_{{i}}={i}\Delta {x}\) and \({{Y}}_{{i}}={i}\Delta {y}\) as follows:

$$S_{i} = ~\mathop \sum \limits_{{k \ne i,i - 1}} \left[ {\left( {W_{{k + 1}} - W_{k} } \right)F_{{i,k}} + 0.5~\left( {W_{{i + 1}} - W_{{i - 1}} } \right)G_{i}^{{\left( 0 \right)}} + \left( {W_{{i + 1}} - W_{{i - 1}} - 2W_{i} } \right)G_{i}^{{\left( 1 \right)}} } \right]~$$
(B9)

The first term of the right-hand side (RHS) of Eq. (B9) is a linear approximation and the second part of RHS of Eq. (A6) is a parabolic approximation of \({{W}}_{{i}}\). Therefore, Eq. (B9) can be rewritten as follows:

$${{S}}_{{i}}= \sum_{{k}\ne {i},{i}-1}\left[\left({{W}}_{{k}+1}-{{W}}_{{k}}\right){{F}}_{{i},{k}}+0.5 \left({{W}}_{{i}+1}-{{W}}_{{i}-1}\right){{G}}_{{i}}^{(0)}+\left({{W}}_{{i}+1}-{{W}}_{{i}-1}-2{{W}}_{{i}}\right){{G}}_{{i}}^{(1)}\right]$$
(B10)
$${{F}}_{{i},{k}}={ln}\left|\frac{({i}+{k}+1)({i}-{k})}{({i}-{k}-1)({i}+{k})}\right|-\frac{6{i}}{\left({i}+{k}+1\right)\left({i}+{k}\right)}+\frac{2{{i}}^{2}(2{k}+2{i}+1)}{{({i}+{k}+1)}^{2}{({i}+{k})}^{2}}$$
(B11)
$${{G}}_{{i}}^{(0)}=\underset{{i}-1}{\overset{{i}+1}{\int }}\left(\frac{1}{{y}-{z}}-\frac{1}{{y}+{z}}- \frac{2{z}\left({y}-{z}\right)}{{\left({y}+{z}\right)}^{3}}\right){dZ}={ ln}\left|\frac{2{i}+1}{2{i}-1}\right|-\frac{12{i}}{\left(4{{i}}^{2}-1\right)}+\frac{16{{i}}^{3}}{{\left(4{{i}}^{2}-1\right)}^{2}}$$
(B12)
$${{G}}_{{i}}^{(1)}=\underset{{i}-1}{\overset{{i}+1}{\int }}\left(\frac{1}{{y}-{z}}-\frac{1}{{y}+{z}}- \frac{2{z}\left({y}-{z}\right)}{{\left({y}+{z}\right)}^{3}}\right)({z}-{y}){dZ}=-8{i ln}\left|\frac{2{i}+1}{2{i}-1}\right|+\frac{32{{i}}^{2}}{4{{i}}^{2}-1}-\frac{32{{i}}^{4}}{{(4{{i}}^{2}-1)}^{2}}$$
(B13)

Equations (B7), (B8), (B10-13) were solved by coding in MATLAB.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghatei-Kalashami, A., Khan, M.S., Goodwin, F. et al. Investigating the mechanism of zinc-induced liquid metal embrittlement crack initiation in austenitic microstructure. J Mater Sci 58, 15314–15335 (2023). https://doi.org/10.1007/s10853-023-08963-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08963-w

Navigation