Skip to main content
Log in

Fluorescent probe based on hydrogel-immobilized carbon dots complex with temperature-trigger for ferric iron detection

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel fluorescent probe based on poly(N-isopropyl acrylamide) (p(NIPAAm-co-AAm)) immobilized carbon dots@SiO2 nanoparticles complex was synthesized for ferric iron detection through the chemical crosslinking methods, in which carbon dots@SiO2 nanoparticles complex was characterized by field emission scanning electron microscope, Fourier transform infrared spectroscopy, Ultraviolet–visible spectrophotometer and fluorescence spectrophotometer, respectively. The fluorescence quenching between p(NIPAAm-co-AAm)-CQDs and ferric iron were able to be controlled at different temperatures based on the swelling and shrinking of p(NIPAAm-co-AAm) through changing the temperature, which the principle of the probe was analyzed. The fluorescent probe could detect the ferric iron with a good linear relationship in the range of concentration from 0 to 50 μM and the limit of detection was 0.48 μM at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author.

References

  1. Zheng M, Tan HQ, Xie ZG, Zhang LG, Jing XB, Sun ZC (2013) Fast response and high sensitivity europium metal organic framework fluorescent probe with chelating Terpyridine sites for Fe3+ (in English). Acs Appl Mater Inter 5:1078–1083. https://doi.org/10.1021/am302862k

    Article  CAS  Google Scholar 

  2. Zecca L, Youdim MBH, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders (in English). Nat Rev Neurosci 5:863–873. https://doi.org/10.1038/nrn1537

    Article  CAS  Google Scholar 

  3. Tu J, Yang X, Liu H, Chen P, Liu K, Gao J (2022) A ‘on-off-on’ fluorescent probe for sensitive detection of Fe3+ and ascorbic acid by cross-linking agent protected carbon dots. Int J Environ an Ch 102:243–253. https://doi.org/10.1080/03067319.2020.1720010

    Article  CAS  Google Scholar 

  4. Bradbury MW (1997) Transport of iron in the blood-brain-cerebrospinal fluid system (in English). J Neurochem 69:443–454. https://doi.org/10.1046/j.1471-4159.1997.69020443.x

    Article  CAS  Google Scholar 

  5. Fiedler A, Reinert T, Morawski M, Bruckner G, Arendt T, Butz T (2007) Intracellular iron concentration of neurons with and without perineuronal nets (in English). Nucl Instrum Meth B 260:153–158. https://doi.org/10.1016/j.nimb.2007.02.069

    Article  CAS  Google Scholar 

  6. Brugnara C (2003) Iron deficiency and erythropoiesis: New diagnostic approaches (in English). Clin Chem 49:1573–1578. https://doi.org/10.1373/49.10.1573

    Article  CAS  Google Scholar 

  7. Neilands JB (1984) Methodology of siderophores, in Siderophores from Microorganisms and Plants. In: Chimiak A, Hider RC, Liu A, Neilands JB, Nomoto K, Sugiura Y (eds) Structure and Bonding. Springer, Berlin Heidelberg, Berlin, pp 1–24. https://doi.org/10.1007/BFb0111309

    Chapter  Google Scholar 

  8. Hosnedlova B, Sochor J, Baron M, Bjorklund G, Kizek R (2020) Application of nanotechnology based-biosensors in analysis of wine compounds and control of wine quality and safety: A critical review. Crit Rev Food Sci Nutr 60:3271–3289. https://doi.org/10.1080/10408398.2019.1682965

    Article  CAS  Google Scholar 

  9. Haas JD, Brownlie Iv T (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131:676S-690S. https://doi.org/10.1093/jn/131.2.676S

    Article  CAS  Google Scholar 

  10. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications (in English). Chem Soc Rev 44:362–381. https://doi.org/10.1039/c4cs00269e

    Article  CAS  Google Scholar 

  11. Li JY et al (2017) One-pot hydrothermal synthesis of carbon dots with efficient up- and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay (in English). Langmuir 33:1043–1050. https://doi.org/10.1021/acs.langmuir.6b04225

    Article  CAS  Google Scholar 

  12. Zhu SJ, Song YB, Zhao XH, Shao JR, Zhang JH, Yang B (2015) The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective (in English). Nano Res 8:355–381. https://doi.org/10.1007/s12274-014-0644-3

    Article  CAS  Google Scholar 

  13. Wang H, Mukherjee S, Ji JH, Banerjee P, Chen QW, Zhou SQ (2017) Biocompatible chitosan-carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal-chemo therapy (in English). Acs Appl Mater Inter 9:18639–18649. https://doi.org/10.1021/acsami.7b06062

    Article  CAS  Google Scholar 

  14. Lan MH et al (2015) A carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism (in English). Chem Commun 51:15574–15577. https://doi.org/10.1039/c5cc05835j

    Article  CAS  Google Scholar 

  15. Li CL et al (2015) Synthesis of photoluminescent carbon dots for the detection of cobalt ions (in English). Rsc Adv 5:2285–2291. https://doi.org/10.1039/c4ra11704b

    Article  CAS  Google Scholar 

  16. Ansi VA, Renuka NK (2018) Table sugar derived Carbon dot - a naked eye sensor for toxic Pb2+ ions (in English). Sensor Actuat B-Chem 264:67–75. https://doi.org/10.1016/j.snb.2018.02.167

    Article  CAS  Google Scholar 

  17. Luo PJG et al (2013) Carbon “quantum” dots for optical bioimaging (in English). J Mater Chem B 1:2116–2127. https://doi.org/10.1039/c3tb00018d

    Article  CAS  Google Scholar 

  18. Roy P et al (2015) Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells (in English). Nanoscale 7:2504–2510. https://doi.org/10.1039/c4nr07005d

    Article  CAS  Google Scholar 

  19. Dhanush C, Aravind MK, Ashokkumar B, Sethuraman MG (2022) Synthesis of blue emissive fluorescent nitrogen doped carbon dots from Annona squamosa fruit extract and their diverse applications in the field of catalysis and bio-imaging. J Photochem Photobiol A Chem 432:114097. https://doi.org/10.1016/j.jphotochem.2022.114097

    Article  CAS  Google Scholar 

  20. Kasinathan K, Samayanan S, Marimuthu K, Yim JH (2022) Green synthesis of multicolour fluorescence carbon quantum dots from sugarcane waste: Investigation of mercury (II) ion sensing, and bio-imaging applications. Appl Surf Sci 601:154266. https://doi.org/10.1016/j.apsusc.2022.154266

    Article  CAS  Google Scholar 

  21. Liang S, Wang M, Gao W, Luo S, Huang N, Qin Y (2021) Fluorescent carbon dots derived from magnolia withered leaves for promoting growth and fluorescent labeling of bean sprouts. Carbon Trends 4:100063. https://doi.org/10.1016/j.cartre.2021.100063

    Article  CAS  Google Scholar 

  22. Ahlawat A, Rana PS, Solanki PR (2021) Studies of photocatalytic and optoelectronic properties of microwave synthesized and polyethyleneimine stabilized carbon quantum dots. Mater Lett 305:130830. https://doi.org/10.1016/j.matlet.2021.130830

    Article  CAS  Google Scholar 

  23. Rajapandi S, Pandeeswaran M, Kousalya GN (2022) Novel green synthesis of N-doped carbon dots from fruits of Opuntia ficus Indica as an effective catalyst for the photocatalytic degradation of methyl orange dye and antibacterial studies. Inorg Chem Commun 146:110041. https://doi.org/10.1016/j.inoche.2022.110041

    Article  CAS  Google Scholar 

  24. Lu J et al (2022) Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen. Chem Eng J 453:139834. https://doi.org/10.1016/j.cej.2022.139834

    Article  CAS  Google Scholar 

  25. Thara CR, Korah BK, Mathew S, John BK, Mathew B (2022) Dual mode detection and sunlight-driven photocatalytic degradation of tetracycline with tailor-made N-doped carbon dots. Environ Res 216:114450. https://doi.org/10.1016/j.envres.2022.114450

    Article  CAS  Google Scholar 

  26. Qiu Y, Park K (2012) Environment-sensitive hydrogels for drug delivery (in English). Adv Drug Deliver Rev 64:49–60. https://doi.org/10.1016/j.addr.2012.09.024

    Article  Google Scholar 

  27. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges (in English). Polymer 49:1993–2007. https://doi.org/10.1016/j.polymer.2008.01.027

    Article  CAS  Google Scholar 

  28. Basak S, Nandi N, Paul S, Hamley IW, Banerjee A (2017) A tripeptide-based self-shrinking hydrogel for waste-water treatment: removal of toxic organic dyes and lead (Pb2+) ions (in English). Chem Commun 53:5910–5913. https://doi.org/10.1039/c7cc01774j

    Article  CAS  Google Scholar 

  29. Koo HJ, So JH, Dickey MD, Velev OD (2011) Towards all-soft matter circuits: prototypes of quasi-liquid devices with memristor characteristics (in English). Adv Mater 23:3559. https://doi.org/10.1002/adma.201101257

    Article  CAS  Google Scholar 

  30. Wang B, Xu XD, Wang ZC, Cheng SX, Zhang XZ, Zhu RX (2008) Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels (in English). Colloid Surface B 64:34–41. https://doi.org/10.1016/j.colsurfb.2008.01.001

    Article  CAS  Google Scholar 

  31. Satarkar NS, Hilt JZ (2008) Hydrogel nanocomposites as remote-controlled biomaterials (in English). Acta Biomater 4:11–16. https://doi.org/10.1016/j.actbio.2007.07.009

    Article  CAS  Google Scholar 

  32. Zhang JT, Keller TF, Bhat R, Garipcan B, Jandt KD (2010) A novel two-level microstructured poly(N-isopropylacrylamide) hydrogel for controlled release (in English). Acta Biomater 6:3890–3898. https://doi.org/10.1016/j.actbio.2010.05.009

    Article  CAS  Google Scholar 

  33. Stöber W, Fink A, Bohn E (1986) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interf Sci 26:62–69. https://doi.org/10.1016/0021-9797(68)90272-5

    Article  Google Scholar 

  34. Lin HT, Huang J, Ding LY (2019) Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. J Nanomater 2019:5037243. https://doi.org/10.1155/2019/5037243

    Article  CAS  Google Scholar 

  35. Luo ZT, Lu Y, Somers LA, Johnson ATC (2009) High preparation of macroscopic graphene oxide membranes (in English). J Am Chem Soc 131:898. https://doi.org/10.1021/ja807934n

    Article  CAS  Google Scholar 

  36. Wang Y, Kalytchuk S, Zhang Y, Shi HC, Kershaw SV, Rogach AL (2014) Thickness-dependent full-color emission Tunability in a flexible carbon dot Ionogel (in English). J Phys Chem Lett 5:1412–1420. https://doi.org/10.1021/jz5005335

    Article  CAS  Google Scholar 

  37. Feng BX, Xu Z, Wang JY, Gai LG (2019) Water-soluble organic polymer/silica composite nanofilms with improved fluorescence quantum yield (in English). J Lumin 211:347–354. https://doi.org/10.1016/j.jlumin.2019.03.066

    Article  CAS  Google Scholar 

  38. Heskins M, Guillet JE (1968) Solution properties of Poly(N-isopropylacrylamide). J Macromol Sci Part A Chem 2:1441–1455. https://doi.org/10.1080/10601326808051910

    Article  CAS  Google Scholar 

  39. Wang R, Yu F, Liu P, Chen L (2012) A turn-on fluorescent probe based on hydroxylamine oxidation for detecting ferric ion selectively in living cells. Chem Commun 48:5310–5312. https://doi.org/10.1039/C2CC31426F

    Article  CAS  Google Scholar 

  40. Xie PH, Guo FQ, Xia RR et al (2014) A rhodamine-dansyl conjugate as a FRET based sensor for Fe3+ in the red spectral region. J Lumin 145:849–854. https://doi.org/10.1016/j.jlumin.2013.09.003

    Article  CAS  Google Scholar 

  41. Lee MH, Van Giap T, Kim SH et al (2010) A novel strategy to selectively detect Fe(III) in aqueous media driven by hydrolysis of a rhodamine 6G Schiff base. Chem Commun 46(9):1407–1409. https://doi.org/10.1039/b921526c

    Article  CAS  Google Scholar 

  42. Green SA, Morel FMM, Blough NV (1992) Investigation of the electrostatic properties of humic substances by fluorescence quenching. Environ Sci Technol 26:294–302. https://doi.org/10.1021/es00026a008

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the FTIR, SEM and AFM measurements.

Funding

This work is supported by Financial Support from Key Technology R&D Program of Shandong Province (2022CXPT052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haitao Lin or Zike Jiang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Ethical approval

Ethics approval is not required for this research.

Additional information

Handling Editor: Andrea de Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1306 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Jiang, Z., Wang, J. et al. Fluorescent probe based on hydrogel-immobilized carbon dots complex with temperature-trigger for ferric iron detection. J Mater Sci 58, 7602–7612 (2023). https://doi.org/10.1007/s10853-023-08510-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08510-7

Navigation