Skip to main content
Log in

Effect of low aging temperature and the reversion of martensite on the mechanical behavior of a 2304 lean duplex stainless steel

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of aging temperature on martensite reversion and mechanical behavior of a 2304-lean duplex stainless steel (LDSS) was analyzed after cold rolling to 74% reduction and aging at 400–600 °C for 1800 s. Strain-induced martensite (SIM) formation results from cold rolling. After cold rolling, the results revealed a Nishiyama–Wasser (N–W) relationship between the  '-martensite laths and the metastable austenite. Increasing the aging temperature led to a rise in the steel strength, resulting in very low ductility, but with high yield and tensile strength of the specimens. The SIM reversion started between 500 and 550 °C for 1800 s soaking time. At temperatures between 400 and 500 °C, substantial embrittlement occurred. Precipitation of the   +  ∝ ′ (spinodal decomposition) in solid solution in ferrite was not observed. Hence, it is not the cause of the steel embrittlement. The mechanisms involved in the increase of strength and embrittlement were the aging of the austenite phase due to the formation of a substructure with ultrafine or nano-deformation twins, stacking faults, and shear bands in a lamellar array, and possibly Suzuki effect mechanism occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form part of an ongoing study.

References

  1. Schweitzer PA (2003) Metallic materials: physical, mechanical, and corrosion properties. Marcel Dekker Inc, New York, p 710

    Book  Google Scholar 

  2. Mesquita TJ, Chauveau E, Mantel M, Kinsman N, Roche V, Nogueira RP (2012) Lean duplex stainless steels. The role of molybdenum in pitting corrosion of concrete reinforcement studied with industrial and laboratory castings. Mater Chem Phys 132:967–972

    Article  CAS  Google Scholar 

  3. Breda M, Pezzato L, Pizzo M, Calliari I (2014) Effect of cold rolling on pitting resistance in duplex stainless steels. La Metall Ital 6:15–19

    Google Scholar 

  4. Guo Y, Hu J, Li J, Jiang L, Liu T, Wu Y (2014) Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel. Materials 7:6604–6619

    Article  Google Scholar 

  5. Gunn RN (1997) Duplex stainless steels: microstructure, properties, and applications. Woodhead Publishing, Cambridge, 219 pp

  6. Zhang Z, Han D, Jiang Y, Shi C, Li J (2012) Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304. Nucl Eng Des 243:56–62

    Article  CAS  Google Scholar 

  7. Zhang L, Zhang W, Jiang Y, Deng B, Sun D, Li J (2009) Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101. Electrochem Acta 54:5387–5392

    Article  CAS  Google Scholar 

  8. G. Krauss (2015) Steels: processing, structure, and performance. ASM Int., Ohio, 715 pp

  9. Jinlong L, Tongxiang L, Chen W, Limin D (2016) Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel. Mater Sci Eng C 62:558–563

    Article  Google Scholar 

  10. Jiménez JA, Frommeyer G, Carsí M, Ruano OA (2001) Superplastic properties of a δ/γ stainless steel. Mater Sci Eng A 307:134–142

    Article  Google Scholar 

  11. Bhadak B, Zaid M, Bhattacharjee PP (2014) Effect of warm rolling on the evolution of microstructure, microtexture and mechanical properties of commercial grade duplex steel. Proc Mater Sci 5:855–862

    Article  CAS  Google Scholar 

  12. C.L. Beech (1989) Effect of temperature and strain rate on the mechanical properties and deformation behavior of a duplex stainless steel, M.S. Thesis, Colorado School of Mines, Golden, CO, pp. 158

  13. Maria GGB, Dias CAD, Rodrigues DG, Santos DB (2018) Strain-induced martensite and reverse transformation in 2304 lean duplex stainless steel and its influence on mechanical behavior. Steel Res Int 90(3):1800437

    Article  Google Scholar 

  14. Ran Q, Xu Y, Li J, Wan J, Xiao X, Yu H et al (2014) Effect of heat treatment on transformation-induced plasticity of economical Cr19 duplex stainless steel. Mater Des 56:959–965

    Article  CAS  Google Scholar 

  15. Saenarjhan N, Kang J-H, Lee SC, Kim S-J (2017) Influence of annealing temperature on deformation behavior of 329LA lean duplex stainless steel. Mater Sci Eng A 679:531–537

    Article  CAS  Google Scholar 

  16. Yen HW, Ooi SW, Eizadjou M, Breen A, Huang CY, Bhadeshia HK et al (2015) Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels. Acta Mater 82:100–114

    Article  CAS  Google Scholar 

  17. Gauzzi F, Montanari R, Principi G, Tata ME (2006) AISI, 304 steel: anomalous evolution of martensitic phase following heat treatments at 400 °C. Mater Sci Eng A 438–440:202–206

    Article  Google Scholar 

  18. Mangonon PL, Thomas G (1970) Structure and properties of thermal-mechanically treated 304 stainless. Metall Trans 1:1587–1594

    Article  CAS  Google Scholar 

  19. Chukhleb AN, Martynov VP (1960) Change in the phase composition of steels of type 18–8 in dependence on the temperature and the degree of deformation. Met Sci Heat Treat 1:43–45

    Article  Google Scholar 

  20. Mukhopadhyay CK, Jayakumar T, Kasiviswanathan KV, Raj B (1995) Study of aging-induced ′-martensite formation in cold worked AISI, type 304 stainless steel using an acoustic emission technique. J Mater Sci 30:4556–4560

    Article  CAS  Google Scholar 

  21. Rathbun RW, Matlock DK, Speer JG (2000) Strain aging behavior of austenitic stainless steels containing strain-induced martensite. Scr Mater 42:887–891

    Article  CAS  Google Scholar 

  22. Fujita M, Kaneko Y, Nohara A, Saka H, Zauter R, Mughrabi H (1994) Temperature dependence of the dissociation width of dislocations in a commercial 304L stainless steel. ISIJ Int 34:697–703

    Article  CAS  Google Scholar 

  23. Vignal V, Zhang H, Delrue O, Heintz O, Popa I, Peultier J (2011) Influence of long-term aging in solution containing chloride ions on the passivity and the corrosion resistance of duplex stainless steels. Corros Sci 53:894–903

    Article  CAS  Google Scholar 

  24. Keichel J, Foct J, Gottstein G (2003) Deformation and annealing behavior of nitrogen alloyed duplex stainless steels. Part II Annealing ISIJ Int 43:1788–1794

    Article  CAS  Google Scholar 

  25. Reick W, Pohl M, Padilha AF (1998) Recrystallization-transformation combined reactions during annealing of a cold rolled ferritic-austenitic duplex stainless steel. ISIJ Int 38:567–571

    Article  CAS  Google Scholar 

  26. Breda M, Brunelli K, Grazzi F, Scherillo A, Calliari I (2015) Effects of cold rolling and strain-induced martensite formation in a SAF 2205 duplex stainless steel. Metall Mater Trans A 46:577–586

    Article  CAS  Google Scholar 

  27. Moallemi M, Zarei-Hanzaki A, Baghbadorani HS (2017) Evolution of microstructure and mechanical properties in a cold deformed nitrogen bearing TRIP-assisted duplex stainless steel after reversion annealing. Mater Sci Eng A 683:83–89

    Article  CAS  Google Scholar 

  28. Tomimura K, Takaki T, Tokunaga Y (1991) Reversion austenite mechanism from deformation induced martensite in metastable austenitic stainless steels. ISIJ Int 31:1431–1437

    Article  CAS  Google Scholar 

  29. Tavares SS, Pardal JM, Silva MR, de Oliveira CA (2014) Martensitic transformation induced by cold deformation of lean duplex stainless steel UNS S32304. Mater Res 17:381–385

    Article  CAS  Google Scholar 

  30. Sandim MJR, Souza Filho IR, Mota CFGS, Zilnyk KD, Sandim HRZ (2021) Microstructural and magnetic characterization of a lean duplex steel: strain-induced martensite formation and austenite reversion. J Mag Magn Mater 517:167–370

    Article  Google Scholar 

  31. Kurc-Lisiecka A, Ozgowicz W, Ratuszek W, Chruściel K (2012) Texture and structure evolution during cold rolling of austenitic stainless steel. J Achiev Mater Manuf Eng 52:22–30

    Google Scholar 

  32. Somani MC, Juntunen P, Karjalainen LP, Misra RDK, Kyröläinen A (2009) Enhanced mechanical properties through reversion in metastable austenitic stainless steels. Metall Mater Trans A 40:729–744

    Article  Google Scholar 

  33. Järvenpää A, Jaskari M, Kisko A, Karjalainen P (2020) Processing and properties of reversion-treated austenitic stainless steels. Metals 10(281):1–43

    Google Scholar 

  34. Panov D, Kudryavtsev E, Chernichenko R, Smirnov A, Stepanov N, Simonov Y et al (2021) Mechanisms of the reverse martensite-to-austenite transformation in a metastable austenitic stainless steel. Metals 11:1–13

    Article  Google Scholar 

  35. Takaki S, Tomimura K, Ueda S (1994) Effect of pre-cold-working on diffusional reversion of deformation induced martensitic in metastable austenitic stainless steel. ISIJ Int 34:522–527

    Article  CAS  Google Scholar 

  36. Malta PO, Dias FL, de Souza ACM, Santos DB (2018) Microstructure and texture evolution of duplex stainless steels with different molybdenum contents. Mater Charact 142:406–421

    Article  CAS  Google Scholar 

  37. Humphreys FJ, Hatherly M (1995) Recrystallisation and related annealing phenomena. Pergamom, Oxford

    Google Scholar 

  38. Belyakov A, Kimura Y, Tsuzaki K (2006) Microstructure evolution in dual-phase stainless steel during severe deformation. Acta Mater 54:2521–2532

    Article  CAS  Google Scholar 

  39. Guo Y, Hu J, Li J, Jiang L, Liu T, Wu Y (2014) Effect of annealing temperature on the mechanical and corrosion behavior of a newly developed novel lean duplex stainless steel. Mater 7:6604–6619

    Article  Google Scholar 

  40. Mahajan S, Pande CS, Imam MA, Rath BB (1997) Formation of annealing twins in f.c.c. crystals. Acta Mater. 45:2633–2638

    Article  CAS  Google Scholar 

  41. Fargas G, Akdut N, Anglada M, Mateo A (2008) Microstructural evolution during industrial rolling of a duplex stainless steel. ISIJ Int 48:1596–1602

    Article  CAS  Google Scholar 

  42. Duprez L, De Cooman BC, Akdut N (2002) Deformation behaviour of duplex stainless steel during industrial hot rolling. Steel Res Int 73:531–538

    Article  CAS  Google Scholar 

  43. Zhang W, Hu J (2013) Effect of annealing temperature on transformation induced plasticity effect of a lean duplex stainless steel. Mater Charact 79:37–42

    Article  CAS  Google Scholar 

  44. Martin S, Wolf S, Martin U, Krüger L, Rafaja D (2016) Deformation mechanisms in austenitic TRIP/TWIP steel as a function of temperature. Metall Mater Trans A 47:49–58

    Article  CAS  Google Scholar 

  45. Singh J (1985) Influence of deformation on the transformation of austenitic stainless steels. J Mater Sci 20:3157–3166

    Article  CAS  Google Scholar 

  46. Chiba A, Kim MS (2001) Suzuki segregation and dislocation locking in supersaturated Co–Ni-based alloy. Mater Trans 42:2112–7

    Article  CAS  Google Scholar 

  47. Jeong SW, Kang UG, Choi JY, Nam WJ (2012) Comparative study of hardening mechanisms during aging of a 304 stainless steel containing ′-martensite. J Mater Eng Perform 21:1937–1942

    Article  CAS  Google Scholar 

  48. Miura H, Kobayashi KM, Todaka Y, Watanabe C, Aoyagi Y, Sugiura N (2017) Heterogeneous nanostructure developed in heavily cold-rolled stainless steels and the specific mechanical properties. Scr Mater 133:33–36

    Article  CAS  Google Scholar 

  49. Yan FK, Tao NR, Archie F, Gutierrez-Urrutia I, Raabe D, Lu K (2014) Deformation mechanisms in an austenitic single-phase duplex microstructured steel with nano-twinned grains. Acta Mater 81:487–500

    Article  CAS  Google Scholar 

  50. Pramanik S, Bera S, Ghosh SK (2014) Influence of cold rolling on microstructural evolution in 2205 duplex stainless steel. Steel Res Int 85(5):776–783

    Article  CAS  Google Scholar 

  51. Sokura LA, Nevedomskiy VN, Bert NA (2018) The features of Moiré pattern on electron-microscope images of free-standing quantum dots containing dislocations. IOP Conf Ser J Phys Conf Ser 1124:022028

    Article  Google Scholar 

  52. Misra RDK, Nayak S, Mali SA, Shah JS, Somani MC, Karjalainen LP (2009) Microstructure and deformation behavior of phase-reversion-induced nanograined/ultrafine-grained austenitic stainless steel. Metall Mater Trans A 40A:2498–2509

    Article  CAS  Google Scholar 

  53. Lee SH, Choi JY, Nam WJ (2009) Hardening behavior of a 304 stainless steel containing deformation-induced martensite during static strain aging. Mater Trans 50:926–929

    Article  CAS  Google Scholar 

  54. Guy KB, Butler EP, West DRF (1983) Reversion of bcc ′ martensite in Fe–Cr–Ni austenitic stainless steels. Metal Sci 17:167–176

    Article  CAS  Google Scholar 

  55. Mota CFGS, Aota LS, Sandim HRZ, Zilnyk KD, Sandim MJR (2023) Austenite reversion in lean duplex steel: microstructural, dilatometric and magnetic characterization. Mater Charac 195(112509):1–12

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to FAPEMIG, CAPES-PROEX, and CNPq for the research fellowships made available to students and for their financial support. Thanks to UFMG Microscopy Center and CIT SENAI for providing excellent scientific support. We also thank Aperam South America company for the samples supply.

Funding

The funding was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico, 403570/2021-2, Dagoberto Brandão Santos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagoberto Brandão Santos.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assumpção, R.F., Santos, R.M., de Sousa, M.L.O. et al. Effect of low aging temperature and the reversion of martensite on the mechanical behavior of a 2304 lean duplex stainless steel. J Mater Sci 58, 5970–5988 (2023). https://doi.org/10.1007/s10853-023-08401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08401-x

Navigation