Skip to main content
Log in

Role of the microstructures on uniform corrosion and SCC behavior of high-strength low-alloy steels

  • Metals & Corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Uniform corrosion and stress corrosion cracking (SCC) of high-strength low-alloy steels with different microstructures in marine environment were investigated. The results show that microstructures (granular bainite, granular bainite and ferrite and tempered sorbite) significantly affect the uniform corrosion rate and SCC susceptibility, but the order of the effect of the microstructures on the two kinds of corrosion is different. Microstructures change the γ-FeOOH proportion of the rust layer, which determines the protection performance and corrosion rate. Hydrogen embrittlement, one of SCC mechanisms, is highly related to the microstructures, i.e., the dislocation density, high-angle grain boundary proportion and Taylor factor value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Dong J, Li C, Liu C, Huang Y, Yu L, Li H, Liu Y (2017) Microstructural and mechanical properties development during quenching-partitioning-tempering process of Nb-V-Ti microalloyed ultra-high strength steel. Mater Sci Eng, A 705:249–256

    Article  CAS  Google Scholar 

  2. Morcillo M, Díaz I, Chico B, Cano H, de la Fuente D (2014) Weathering steels: from empirical development to scientific design A review. Corros Sci 83:6–31

    Article  CAS  Google Scholar 

  3. Cheng XY, Zhang HX, Li H, Shen HP (2015) Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel. Mater Sci Eng, A 636:164–171

    Article  CAS  Google Scholar 

  4. Fan E, Zhao Q, Wang S, Liu B, Yang Y, Huang Y, Luo H, Li X (2022) Investigation of the hydrogen-induced cracking of E690 steel welded joint in simulated seawater. Mater Sci Eng: A 854(27):143802

    Article  CAS  Google Scholar 

  5. Xiong M-X, Liew JYR (2020) Experimental study to differentiate mechanical behaviours of TMCP and QT high strength steel at elevated temperatures. Constr Build Mater 242(10):118105

    Article  Google Scholar 

  6. El-Shenawy E, Reda R (2019) Optimization of TMCP strategy for microstructure refinement and flow-productivity characteristics enhancement of low carbon steel. J Mark Res 8(3):2819–2831

    CAS  Google Scholar 

  7. Mandal G, Ghosh SK, Chatterjee S (2019) Effects of TMCP and QT on microstructure and properties of ultrahigh strength steel. Mater Today: Proc 18:5196–5201

    CAS  Google Scholar 

  8. Shabani H, Goudarzi N, Shabani M (2018) Failure analysis of a natural gas pipeline. Eng Fail Anal 84:167–184

    Article  CAS  Google Scholar 

  9. Jia J, Wu W, Cheng X, Zhao J (2020) Ni-advanced weathering steels in Maldives for 2 years: corrosion results of tropical marine field test. Constr Build Mater 245(10):118463

    Article  CAS  Google Scholar 

  10. Wu W, Dai Z, Liu Z, Liu C, Li X (2021) Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion. Corros Sci 183(1):109353

    Article  CAS  Google Scholar 

  11. Tian H, Cui Z, Ma H, Zhao P, Yan M, Wang X, Cui H (2022) Corrosion evolution and stress corrosion cracking behavior of a low carbon bainite steel in the marine environments: effect of the marine zones. Corros Sci 206:110490

    Article  CAS  Google Scholar 

  12. Wang Z, Zhang X, Cheng L, Liu J, Wu K (2021) Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment. J Mark Res 10:306–321

    CAS  Google Scholar 

  13. Katiyar PK, Misra S, Mondal K (2019) Corrosion behavior of annealed steels with different carbon contents (0.002, 0.17, 0.43 and 0.7% C) in Freely aerated 3.5% NaCl solution. J Mater Eng Perform 28(7):4041–4052

    Article  CAS  Google Scholar 

  14. Hao X, Dong J, Etim I-IN, Wei J, Ke W (2016) Sustained effect of remaining cementite on the corrosion behavior of ferrite-pearlite steel under the simulated bottom plate environment of cargo oil tank. Corros Sci 110:296–304

    Article  CAS  Google Scholar 

  15. Kadowaki M, Muto I, Takahashi K, Doi T, Masuda H, Katayama H, Kawano K, Sugawara Y, Hara N (2019) Anodic polarization characteristics and electrochemical properties of Fe3C in chloride solutions. J Electrochem Soc 166(12):C345–C351

    Article  CAS  Google Scholar 

  16. Katiyar PK, Behera PK, Misra S, Mondal K (2019) Comparative corrosion behavior of five different microstructures of rebar steels in simulated concrete pore solution with and without chloride addition. J Mater Eng Perform 28(10):6275–6286

    Article  CAS  Google Scholar 

  17. Tian H, Chen M, Ge F, Song K, Wang X, Cui Z (2021) Hydrogen permeation and stress corrosion cracking of heat-affected zone of E690 steel under the combined effect of sulfur species and cathodic protection in artificial seawater. Constr Build Mater 296:123721

    Article  CAS  Google Scholar 

  18. Wei J, Dong JH, Ke W et al (2015) Influence of inclusions on early corrosion development of ultra-low carbon bainitic steel in NaCl solution. Corros: J Sci Eng 71(12):1467–1480

    Article  CAS  Google Scholar 

  19. Zhang Y, Huang F, Hu Q, Peng Z, Liu J (2020) Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel. Mater Chem Phys 241:122045

    Article  CAS  Google Scholar 

  20. Bulger JT, Lu BT, Luo JL (2006) Microstructural effect on near-neutral pH stress corrosion cracking resistance of pipeline steels. J Mater Sci 41(15):5001–5005

    Article  CAS  Google Scholar 

  21. Wu W, Hao W, Liu Z, Li X, Du C (2020) Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments. Constr Build Mater 239:117903

    Article  CAS  Google Scholar 

  22. Wu W, Liu Z, Li X, Du C, Cui Z (2019) Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater Sci Eng, A 759:124–141

    Article  CAS  Google Scholar 

  23. Ma H, Chen L, Zhao J, Huang Y, Li X (2020) Effect of prior austenite grain boundaries on corrosion fatigue behaviors of E690 high strength low alloy steel in simulated marine atmosphere. Mater Sci Eng, A 773:138884

    Article  CAS  Google Scholar 

  24. Liu H, Wei J, Dong J, Zhou Y, Chen Y, Wu Y, Babu SD, Umoh AJ, Ke W (2021) The synergy between cementite spheroidization and Cu alloying on the corrosion resistance of ferrite-pearlite steel in acidic chloride solution. J Mater Sci Technol 84:65–75

    Article  CAS  Google Scholar 

  25. Neetu PK, Katiyar S, Sangal K (2021) Mondal, Effect of various phase fraction of bainite, intercritical ferrite, retained austenite and pearlite on the corrosion behavior of multiphase steels. Corros Sci 178:109043

    Article  CAS  Google Scholar 

  26. Qu S, Pang X, Wang Y, Gao K (2013) Corrosion behavior of each phase in low carbon microalloyed ferrite–bainite dual-phase steel: experiments and modeling. Corros Sci 75:67–77

    Article  CAS  Google Scholar 

  27. Zhang S, Zhao Q, Liu J, Huang F, Huang Y, Li X (2019) Understanding the effect of niobium on hydrogen-induced blistering in pipeline steel: a combined experimental and theoretical study. Corros Sci 159:108142

    Article  CAS  Google Scholar 

  28. Dong CF, Liu ZY, Li XG, Cheng YF (2009) Effects of hydrogen-charging on the susceptibility of X100 pipeline steel to hydrogen-induced cracking. Int J Hydrog Energy 34(24):9879–9884

    Article  CAS  Google Scholar 

  29. Park GT, Koh SU, Jung HG, Kim KY (2008) Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros Sci 50(7):1865–1871

    Article  CAS  Google Scholar 

  30. Li Y, Liu Z, Wu W, Li X, Zhao J (2020) Crack growth behaviour of E690 steel in artificial seawater with various pH values. Corros Sci 164:108336

    Article  CAS  Google Scholar 

  31. Qiao Q, Lu L, Fan E, Zhao J, Liu Y, Peng G, Huang Y, Li X (2019) Effects of Nb on stress corrosion cracking of high-strength low-alloy steel in simulated seawater. Int J Hydrog Energy 44(51):27962–27973

    Article  CAS  Google Scholar 

  32. Mao C, Liu C, Yu L, Li H, Liu Y (2021) Discontinuous lath martensite transformation and its relationship with annealing twin of parent austenite and cooling rate in low carbon RAFM steel. Mater Des 197:109252

    Article  CAS  Google Scholar 

  33. Sun C, Fu P-X, Ma X-P, Liu H-H, Du N-Y, Cao Y-F, Liu H-W, Li D-Z (2020) Effect of matrix carbon content and lath martensite microstructures on the tempered precipitates and impact toughness of a medium-carbon low-alloy steel. J Mark Res 9(4):7701–7710

    CAS  Google Scholar 

  34. Liu S, Cui C, Zhang D, Wang C, Wang X (2020) Strength degradation of 42CrMo steel in a thermal field and its characterization method. Mater Lett 274:128031

    Article  CAS  Google Scholar 

  35. Jing G, Huang W, Yang H, Wang Z (2020) Microstructural evolution and mechanical properties of 300M steel produced by low and high power selective laser melting. J Mater Sci Technol 48:44–56

    Article  Google Scholar 

  36. Tian H, Xin J, Li Y, Wang X, Cui Z (2019) Combined effect of cathodic potential and sulfur species on calcareous deposition, hydrogen permeation, and hydrogen embrittlement of a low carbon bainite steel in artificial seawater. Corros Sci 158:108089

    Article  CAS  Google Scholar 

  37. Arafin MA, Szpunar JA (2011) Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking. Mater Sci Eng, A 528(15):4927–4940

    Article  CAS  Google Scholar 

  38. Masoumi M, Silva CC, de Abreu HFG (2016) Effect of crystallographic orientations on the hydrogen-induced cracking resistance improvement of API 5L X70 pipeline steel under various thermomechanical processing. Corros Sci 111:121–131

    Article  CAS  Google Scholar 

  39. Mohtadi-Bonab MA, Szpunar JA, Basu R, Eskandari M (2015) The mechanism of failure by hydrogen induced cracking in an acidic environment for API 5L X70 pipeline steel. Int J Hydrog Energy 40(2):1096–1107

    Article  CAS  Google Scholar 

  40. Zhang S, Fan E, Wan J, Liu J, Huang Y, Li X (2018) Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel. Corros Sci 139:83–96

    Article  CAS  Google Scholar 

  41. Zhao Q, Fan E, Wang S, Zhao J, Huang Y, Li X (2021) Understanding the effect of Nanosized NbC precipitates on the stress corrosion cracking of high-strength low-alloy steel in a simulated deep-sea environment. J Mater Eng Perform 30(3):2159–2173

    Article  Google Scholar 

  42. Shintani T, Murata Y (2011) Evaluation of the dislocation density and dislocation character in cold rolled Type 304 steel determined by profile analysis of X-ray diffraction. Acta Mater 59(11):4314–4322

    Article  CAS  Google Scholar 

  43. Takebayashi S, Kunieda T, Yoshinaga N et al (2010) Comparison of the dislocation density in martensitic steels evaluated by some X-ray diffraction methods. ISIJ Int 50(6):875–882

    Article  CAS  Google Scholar 

  44. Macchi J, Gaudez S, Geandier G, Teixeira J, Denis S, Bonnet F, Allain SY (2021) Dislocation densities in a low-carbon steel during martensite transformation determined by in situ high energy X-Ray diffraction. Mater Sci Eng: A 800:140249

    Article  CAS  Google Scholar 

  45. Liu ZY, Li XG, Du CW, Cheng YF (2009) Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution. Corros Sci 51(12):2863–2871

    Article  CAS  Google Scholar 

  46. Nam ND, Lee DY, Kim JG, Park NJ (2014) Effect of cold rolling on the corrosion properties of low-alloy steel in an acid-chloride solution. Met Mater Int 20(3):469–474

    Article  Google Scholar 

  47. El-Amoush AS, Al-Duheisat SA (2018) Cathodic polarization behavior of the structural steel wires under different prestressing conditions. J Mark Res 7(1):1–6

    CAS  Google Scholar 

  48. Sun M, Yang X, Du C, Liu Z, Li Y, Wu Y, San H, Su X, Li X (2021) Distinct beneficial effect of Sn on the corrosion resistance of Cr–Mo low alloy steel. J Mater Sci Technol 81:175–189

    Article  CAS  Google Scholar 

  49. Morcillo M, Chico B, Díaz I, Cano H, de la Fuente D (2013) Atmospheric corrosion data of weathering steels. A review. Corros Sci 77:6–24

    Article  CAS  Google Scholar 

  50. Wu W, Zeng Z, Cheng X, Li X, Liu B (2017) Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment. J Mater Eng Perform 26(12):6075–6086

    Article  CAS  Google Scholar 

  51. Wan Y, Tan J, Zhu S, Cui J, Zhang K, Wang X, Shen X, Li Y, Zhu X (2019) Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM. Corros Sci 152:226–233

    Article  CAS  Google Scholar 

  52. Lu Q, Wang L, Xin J, Tian H, Wang X, Cui Z (2020) Corrosion evolution and stress corrosion cracking of E690 steel for marine construction in artificial seawater under potentiostatic anodic polarization. Constr Build Mater 238:117763

    Article  CAS  Google Scholar 

  53. Tian H, Wang X, Cui Z, Lu Q, Wang L, Lei L, Li Y, Zhang D (2018) Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater. Corros Sci 144:145–162

    Article  CAS  Google Scholar 

  54. Zhang S, Wan J, Zhao Q, Liu J, Huang F, Huang Y, Li X (2020) Dual role of nanosized NbC precipitates in hydrogen embrittlement susceptibility of lath martensitic steel. Corros Sci 164:108345

    Article  CAS  Google Scholar 

  55. Li Y, Liu Z, Fan E, Huang Y, Fan Y, Zhao B (2021) Effect of cathodic potential on stress corrosion cracking behavior of different heat-affected zone microstructures of E690 steel in artificial seawater. J Mater Sci Technol 64:141–152

    Article  CAS  Google Scholar 

  56. Song L, Liu Z, Li X, Du C (2020) Characteristics of hydrogen embrittlement in high-pH stress corrosion cracking of X100 pipeline steel in carbonate/bicarbonate solution. Constr Build Mater 263:120124

    Article  CAS  Google Scholar 

  57. Wu W, Liu Z, Wang Q, Li X (2020) Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying. Corros Sci 170:108693

    Article  CAS  Google Scholar 

  58. Zhao Q, Fan E, Zhao J, Cui Q, Huang Y, Li X (2021) Improved stress corrosion cracking resistance of high-strength low-alloy steel in a simulated deep-sea environment via Nb microalloying. Steel Res Int 92:2000596

    Article  CAS  Google Scholar 

  59. Wang L, Xin J, Cheng L, Zhao K, Sun B, Li J, Wang X, Cui Z (2019) Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment. Corros Sci 147:108–127

    Article  CAS  Google Scholar 

  60. Ma H, Liu Z, Du C, Wang H, Li X, Zhang D, Cui Z (2015) Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide. Corros Sci 100:627–641

    Article  CAS  Google Scholar 

  61. Guedes D, Cupertino Malheiros L, Oudriss A, Cohendoz S, Bouhattate J, Creus J, Thébault F, Piette M, Feaugas X (2020) The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: a new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Mater 186:133–148

    Article  CAS  Google Scholar 

  62. Shi R, Ma Y, Wang Z, Gao L, Yang X-S, Qiao L, Pang X (2020) Atomic-scale investigation of deep hydrogen trapping in NbC/α-Fe semi-coherent interfaces. Acta Mater 200:686–698

    Article  CAS  Google Scholar 

  63. Zhiyong L, Zhongyu C, Xiaogang L, Cuiwei D, Yunying X (2014) Mechanistic aspect of stress corrosion cracking of X80 pipeline steel under non-stable cathodic polarization. Electrochem Commun 48:127–129

    Article  Google Scholar 

  64. Jia J, Liu Z, Li X, Du C, Li W (2021) Comparative study on the stress corrosion cracking of a new Ni-advanced high strength steel prepared by TMCP, direct quenching, and quenching & tempering. Mater Sci Eng, A 825:141854

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51971033), the National Key Research and National Materials Corrosion and Protection Data Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhua Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This article contains no animal or human studies conducted by any of the authors.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Jia, Z., Fan, E. et al. Role of the microstructures on uniform corrosion and SCC behavior of high-strength low-alloy steels. J Mater Sci 57, 21756–21776 (2022). https://doi.org/10.1007/s10853-022-07976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07976-1

Navigation