Skip to main content
Log in

The synthesis of nickel sulfide deposited with nitrogen-doped carbon quantum dots as advanced electrode materials for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The exploration of advanced electrode materials with high specific capacitance is of considerable crucial for supercapacitors but need to be further explored. In this article, nickel sulfide (NiS) nanocrystals decorated carbon quantum dots (CQDs), assisted with the active agent of hexadecyl trimethyl ammonium bromide (CTAB), are rationally designed and successfully synthesized by a facile and simple hydrothermal method. As supercapacitor electrode material, the resulting nonomaterials of NiS-CQDs with the presence of CTAB exhibit a high specific capacitance of 1956 F/g at a current density of 1 A g−1 and a remarkable rate capability of 57% at 8 A g−1, much higher than that of the NiS, NiS-CQDs and NiS(CTAB) samples. The enhanced electrochemical performance of NiS-CQDs(CTAB) eletrode should be ascribed to the synergistic effect with the CQDs and CTAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Choi C, Ashby DS, Butts DM, DeBlock RH, Wei QL, Lau J, Dunn B (2020) Achieving high energy density and high power density with pseudocapacitive materials. Nat Rev Mater 5:5–19

    Article  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  Google Scholar 

  3. Jiang J, Li YY, Liu JP, Huang XT, Yuan CZ, Lou XW (2012) ChemInform abstract: recent advances in metal oxide-based electrode architecture design for electrochemical energy Storage. ChemInform. https://doi.org/10.1002/chin.201247222

    Article  Google Scholar 

  4. Sahoo S, Satpati AK, Sahoo PK, Naik PD (2018) Incorporation of Carbon quantum dots for improvement of supercapacitor performance of nickel sulfide. ACS Omega 3(12):17936–17946

    Article  CAS  Google Scholar 

  5. Chen L, Lian C, Jiang H, Chen LX, Chen JX, Yan J, Liu HL, Li CZ (2020) Dual-conductive N, S co-doped carbon nanoflowers for high-loading quasi-solid-state supercapacitor- ScienceDirect[J]. Chem Eng Sci 217:115496

    Article  CAS  Google Scholar 

  6. Balasubramaniam S, Mohanty A, Balasingam SK, Kim SJ, Ramadoss A (2020) Comprehensive Insight into the Mechanism, Material Selection and Performance Evaluation of Supercapatteries[J]. Nano-Micro Letters 12(1):85

    Article  CAS  Google Scholar 

  7. Xin N, Liu Y, Niu H, Bai HY, Shi WD (2020) In-situ construction of metal organic frameworks derived Co/Zn–S sandwiched graphene film as free-standing electrodes for ultra-high energy density supercapacitors. J Power Sources 451:227772

    Article  CAS  Google Scholar 

  8. Liu T, Jiang CJ, Cheng B, You W, Yu JG (2017) Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance. J Mater Chem A 5:21257–21265

    Article  CAS  Google Scholar 

  9. Permatasari FA, Irham MA, Bisri SZ, Iskandar F (2021) Carbon-based quantum dots for supercapacitors: recent advances and future challenges. Nanomaterials 11(1):91

    Article  CAS  Google Scholar 

  10. Zhao CJ, Zhang ZM, Wang Q, Min S, Qian XZ (2015) Vertically oriented Ni3S2 /RGO/ Ni3S2 nanosheets on Ni foam for superior supercapcitors. RSC Adv 5:63528–63536

    Article  CAS  Google Scholar 

  11. Zhang LY, Shi DW, Liu T, Jaroniec M, Yu JG (2018) Nickel-based materials for supercapacitors. Mater Today 23:35–65

    Google Scholar 

  12. Zhou WJ, Cao XH, Zeng ZY, Shi WH, Zhu YY, Yan QY, Liu H, Wang JY, Zhang H (2013) One-step synthesis of Ni3S2 nanorod@Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 7:2216–2221

    Article  Google Scholar 

  13. Yu XY, Yu L, Shen LF, Song XH, Chen HY, Lou XW (2014) General Formation of MS (M = Ni, Cu, Mn) Box-in-Box Hollow Structures with Enhanced Pseudocapacitive Properties. Adv Func Mater 24(27):7440–7446

    Article  CAS  Google Scholar 

  14. Zhu BT, Wang ZY, Ding SJ, Chen JS, Lou XW (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv 1(3):397–400

    Article  CAS  Google Scholar 

  15. Son MY, Choi JH, Kang YC (2014) Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries. J Power Sources 251(2):480–487

    Article  CAS  Google Scholar 

  16. Yang JQ, Duan XC, Qin Q, Zheng WJ (2013) Solvothermal synthesis of hierarchical flower-like β-NiS with excellent electrochemical performance for supercapacitors. J Mater Chem A 1(27):7880–7884

    Article  CAS  Google Scholar 

  17. Cai F, Rui S, Kang Y, Chen H, Chen M (2015) One-step strategy to a three-dimensional NiS-reduced graphene oxide hybrid nanostructure for high performance supercapacitors. RSC Adv 5(29):23073–23079

    Article  CAS  Google Scholar 

  18. Ji ZY, Liu K, Dai WY, Ma DW, Zhang HY, Shen XP, Zhu GX, Wu SK (2021) High energy density hybrid supercapacitor based on cobalt-doped nickel sulfide flower-lie hierarchitectures deposited with nitrogen-doped carbon dots. Nanoscale 13(3):1689–1695

    Article  CAS  Google Scholar 

  19. Kumar N, Raman N, Sundaresan A (2013) Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect. J Solid State Chem 208:103–108

    Article  CAS  Google Scholar 

  20. Yang JQ, Duan XC, Guo W, Li D, Zhang HL, Zheng WJ (2014) Electrochemical performances investigation of NiS/rGO composite as electrode material for supercapacitors[J]. Nano Energy 5:74–81

    Article  CAS  Google Scholar 

  21. Cai XY, Hansen RV, Zhang LL, Li BS, Poh CK, Lim SH, Chen LW, Yang JL, Lai LF, Lin JY, Shen ZX (2015) Binary metal sulfides and polypyrrole on vertically aligned carbon nanotube arrays/carbon fiber paper as high-performance electrodes. J Mater Chem A Mater energy sustainability 3(44):22043–22052

    Article  CAS  Google Scholar 

  22. Li H, Tao Y, Zheng XY, Luo JY, Kang FY, Cheng HM, Yang QH (2016) Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ Sci 9(10):3135–3142

    Article  CAS  Google Scholar 

  23. Kaur M, Kaur M, Sharma VK (2018) Nitrogen-doped graphene and graphene quantum dots: a review onsynthesis and applications in energy, sensors and environment. Adv Coll Interface Sci 259:44–64

    Article  CAS  Google Scholar 

  24. Dong HF, Dai W, Ju H, Lu H, Zhang X (2015) Multifunctional Poly(L-lactide)-polyethylene glycol-grafted graphene quantum dots for intracellular microrna imaging and combined specific-gene-targeting agents delivery for improved therapeutics. ACS Appl Mater Interfaces 7(20):11015

    Article  CAS  Google Scholar 

  25. Durán N, Simões MB, De Moraes ACM, Fávaro WJ, Seabra AB (2016) Nanobiotechnology of Carbon Dots: a Review. J Biomed Nanotechnol 12(7):1323–1347

    Article  CAS  Google Scholar 

  26. Prasath A, Athika M, Duraisamy E, Sharma AS, Elumalai P (2018) Carbon‐Quantum‐Dot‐Derived Nanostructured MnO2and Its Symmetrical Supercapacitor Performances. ChemiSelect 3(30):8713–8723. https://doi.org/10.1002/slct.201801950

    Article  CAS  Google Scholar 

  27. Wei JS, Song TB, Zhang P, Niu XQ, Chen XB, Xiong HM (2020) A new generation of energy storage electrode materials constructed from carbon dots. Materials Chemistry Frontiers 4:729–749

    Article  CAS  Google Scholar 

  28. Lim SY, Shen W, Gao ZQ (2015) Carbon quantum dots and their applications[J]. Chem Soc Rev 44(1):362–381

    Article  CAS  Google Scholar 

  29. Yang SW, Sun J, Li XB, Zhou W, Wang ZY, He P, Ding GQ, Xie XM, Kang ZH, Jiang M (2014) Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection. J Mater Chem A 2(23):8660–8667

    Article  CAS  Google Scholar 

  30. Li HJ, Han SC, Lyu BW, Hong T, Zhi SB, Xu L, Xue FF, Sai LM, Yang JH, Wang XY, He B (2021) Tunable light emission from carbon dots by controlling surface defects. Chin Chem Lett 32(9):2887–2892

    Article  CAS  Google Scholar 

  31. Ai L, Yang YS, Wang BY, Chang JB, Tang ZY, Yang B, Lu SY (2021) Insights into photoluminescence mechanisms of carbon dots: Advances and perspectives. Sci Bulletin 66(8):839–856

    Article  CAS  Google Scholar 

  32. Yang YY, Peng KL, Deng YK, Zhao YJ, Ai JS, Min X, Hu MZ, Huang S, Yu LX (2021) Full-color-emission carbon quantum dots by controlling surface states in a system of solvent. J Lumin 243:118614

    Article  CAS  Google Scholar 

  33. Ji ZY, Ma D, Dai WY, Liu K, Shen XP, Zhu GX, Nie YJ, Pasang D, Yuan AH (2021) Anchoring nitrogen-doped carbon quantum dots on nickel carbonate hydroxide nanosheets for hybrid supercapacitor applications. J Colloid Interface Sci 590:614–621

    Article  CAS  Google Scholar 

  34. Wei Y, Zhang XL, Wu XY, Tang D, Cai KD, Zhang QG (2016) Carbon quantum dots/Ni–Al layered double hydroxide composite for high-performance supercapacitors. RSC Adv 6:39317–39322

    Article  CAS  Google Scholar 

  35. Prasath A, Athika M, Duraisamy E, Sharma AS, Elumalai P (2018) Carbon-quantum-dot-derived nanostructured MnO2 and Its symmetrical supercapacitor performances. ChemSelect 3:8713–8723

    CAS  Google Scholar 

  36. Guan SD, Fu XL, Zhang Y, Peng ZJ (2017) β-NiS modified CdS nanowires for photocatalytic H2 evolution with exceptionally high efficiency. Chem Sci 9(6):1574–1585

    Article  Google Scholar 

  37. He WD, Wang CG, Li HQ, Deng XL, Xu XJ, Zhai TY (2017) Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Adv Energy Mater 7(21):1700983

    Article  CAS  Google Scholar 

  38. Zhang YF, Zuo LZ, Zhang LS, Yan JJ, Lu HY, Fan W, Liu TX (2016) Immobilization of NiS nanoparticles on N-doped carbon fiber aerogels as advanced electrode materials for supercapacitors[J]. Nano Res 9(9):2747–2759

    Article  CAS  Google Scholar 

  39. Wang LX, Zeng QX, Chen QH, Li CM, Chen JC (2021) Synergistically boosting the electrochemical performance of polypyrrole-coated activated carbon derived from carbon dots for a high-performance supercapacitor. Chem Commun 57(73):9264–9267

    Article  CAS  Google Scholar 

  40. Zhang XY, Wang HS, Shui LL et al (2021) Ultrathin Ni(OH)2 layer coupling with graphene for fast electron/ion transport in supercapacitor. Sci China Mater 64(2):339–348

    Article  CAS  Google Scholar 

  41. Bandaru PR, Yamada H, Narayanan R, Hoefer M (2015) Charge transfer and storage in nanostructures. Mater Sci Eng R Rep 96:1–69

    Article  Google Scholar 

  42. Mei BA, Munteshari O, Lau J, Dunn B, Pilon L (2018) Physical Interpretations of Nyquist Plots for EDLC Electrodes and Devices. J Phys Chem C 122(1):194–206

    Article  CAS  Google Scholar 

  43. Niu HT, Liu Y, Mao BD, Xin N, Jia H, Shi WD (2020) In-situ embedding MOFs-derived copper sulfide polyhedrons in carbon nanotube networks for hybrid supercapacitor with superior energy density. Electrochim Acta 329:135130

    Article  CAS  Google Scholar 

  44. Bhojane P, Sinha L, Devan RS, Shirage PM (2018) Mesoporous layered hexagonal platelets of Co3O4 nanoparticles with (111) facets for battery applications: high performance and ultra-high rate capability. Nanoscale 10(4):1779–1787

    Article  CAS  Google Scholar 

  45. Chen JT, Yang B, Hou H, Li H, Liu Li, Zhang Li, Yan X (2019) Disordered, Large interlayer spacing, and oxygen‐rich carbon nanosheets for potassium ion hybrid capacitor. Adv Energy Mater 9(19):1803894. https://doi.org/10.1002/aenm.201803894

    Article  CAS  Google Scholar 

  46. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 16(4):454–460

    Article  CAS  Google Scholar 

  47. Yu F, Huang T, Zhang PP, Tao YP, Cui FZ, Xie QJ, Yao SZ, Wang FX (2019) Design and synthesis of electrode materials with both battery-like and capacitive charge storage. Energy Storage Mater 22:235–255

    Article  Google Scholar 

  48. Ruan YJ, Jiang JJ, Wan HZ, Ji X, Miao L, Peng L, Zhang B, Lv L, Liu J (2016) Rapid self-assembly of porous square rod-like nickel persulfide via a facile solution method for high-performance supercapacitors. J Power Sources 301:122–130

    Article  CAS  Google Scholar 

  49. Ma RG, Zhou Y, Bi H et al (2020) Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Prog Mater Sci 113:100665

    Article  CAS  Google Scholar 

  50. Lian Y, Xu ZY, Wang DW, Bai YQ, Ban CL, Zhao J, Zhang HH (2020) Nb2O5 quantum dots coated with biomass carbon for ultra-stable lithium-ion supercapacitors. J Alloy Compd 850:156808

    Article  CAS  Google Scholar 

  51. Xuan J, Li JG, Yang HM, Cao LL, Zhang EH, Liang ZH (2017) Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors. Carbon 114:533–543

    Article  CAS  Google Scholar 

  52. Chen TH, Liu ZS (2019) Starch-assistant synthesis of Ni quantum dots/ultrathin carbon nanosheet hybrids for high performance supercapacitor. Mater Lett 236:248–251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully thank the financial supports of National Natural Science Foundation of China (Grant No. 51762033), the Graduate Student Innovation Special Funds of Jiangxi province (No. YC2020-S067 and No. YC2020-B027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Yu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1306 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Peng, K., Deng, Y. et al. The synthesis of nickel sulfide deposited with nitrogen-doped carbon quantum dots as advanced electrode materials for supercapacitors. J Mater Sci 57, 14052–14064 (2022). https://doi.org/10.1007/s10853-022-07513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07513-0

Navigation