Skip to main content

Advertisement

Log in

Tough and stretchy double-network hydrogels based on in situ interpenetration of polyacrylamide and physically cross-linked polyurethane

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using super-tough thermoplastic polyurethane (HTPU) hydrogel and chemically cross-linked polyacrylamide (PAAm) as the first and second network, HTPU/PAAm double-network (DN) hydrogels are synthesized by a one-step radical polymerization in this research. The effects of the mass ratio of the two networks (HTPU and PAAm) and cross-linking density of the PAAm on the mechanical and morphological properties of the DN hydrogels are discussed. The as-prepared DN hydrogels can be stretched beyond 30 times their initial length, and their work of extension reaches a high value of 19.14 MJ/m3. With the introduction of super-tough HTPU as first network, the toughness of the DN hydrogel is increased by ~ 2600% and strength is increased by ~ 1200%, compared to that of the pure PAAm hydrogels. The stretched hydrogels also exhibit good recoverability at 100% extension strain without any hysteresis because of the good elasticity of the HTPU networks. The scanning electron microscopy observation shows that the DN hydrogels exhibit highly porous honeycomb-like structures, dependent on the composition ratio between the HTPU and PAAm. Strong hydrogel fibers with a modulus of 2.17  GPa and strength of 60 MPa can be prepared by drying super-tough DN hydrogels under stretching, holding a prospect in a wound dressing or other medical textile applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Jeong B et al (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388(6645):860–862

    Article  CAS  Google Scholar 

  2. Beebe DJ et al (2000) Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404(6778):588–590

    Article  CAS  Google Scholar 

  3. Malda J et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028

    Article  CAS  Google Scholar 

  4. Fu J (2018) Strong and tough hydrogels crosslinked by multi-functional polymer colloids. J Polym Sci, Part B: Polym Phys 56(19):1336–1350

    Article  CAS  Google Scholar 

  5. Tanaka Y, Gong JP, Osada Y (2005) Novel hydrogels with excellent mechanical performance. Prog Polym Sci 30(1):1–9

    Article  CAS  Google Scholar 

  6. Naficy S et al (2011) Progress toward robust polymer hydrogels. Aust J Chem 64(8):1007–1025

    Article  CAS  Google Scholar 

  7. Gong JP et al (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158

    Article  CAS  Google Scholar 

  8. Gong JP (2014) Materials science: materials both tough and soft. Science 344(6180):161–162

    Article  CAS  Google Scholar 

  9. Fei R et al (2012) Thermoresponsive nanocomposite double network hydrogels. Soft Matter 8(2):481–487

    Article  CAS  Google Scholar 

  10. Li Z et al (2013) Preparation and characterization of pH- and temperature-responsive nanocomposite double network hydrogels. Mater Sci Eng, C 33(4):1951–1957

    Article  CAS  Google Scholar 

  11. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6(12):2583

    Article  CAS  Google Scholar 

  12. Webber RE et al (2007) Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40(8):2919–2927

    Article  CAS  Google Scholar 

  13. Wang X-H et al (2018) Strong and tough fully physically crosslinked double network hydrogels with tunable mechanics and high self-healing performance. Chem Eng J 349:588–594

    Article  CAS  Google Scholar 

  14. Kamata H et al (2014) “Nonswellable” hydrogel without mechanical hysteresis. Science 343(6173):873–875

    Article  CAS  Google Scholar 

  15. Chen Q et al (2015) Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network. Macromolecules 48(21):8003–8010

    Article  CAS  Google Scholar 

  16. Sun J-Y et al (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136

    Article  CAS  Google Scholar 

  17. Yang CH et al (2013) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 5(21):10418–10422

    Article  CAS  Google Scholar 

  18. Chen Q et al (2013) A robust, one-pot synthesis of highly mechanical and recoverable double network hydrogels using thermoreversible sol-gel polysaccharide. Adv Mater 25(30):4171–4176

    Article  CAS  Google Scholar 

  19. Hong C et al (2017) Super bulk and interfacial toughness of physically crosslinked double-network hydrogels. Adv Funct Mater 27(44):1703086

    Article  Google Scholar 

  20. Lu X et al (2014) Super-tough and thermo-healable hydrogel—promising for shape-memory absorbent fiber. J Mater Chem B 2(43):7631–7638

    Article  CAS  Google Scholar 

  21. Liu S, Li L (2017) Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl Mater Interfaces 9(31):26429–26437

    Article  CAS  Google Scholar 

  22. Zhang HJ et al (2016) Tough physical double-network hydrogels based on amphiphilic triblock copolymers. Adv Mater 28(24):4884–4890

    Article  CAS  Google Scholar 

  23. Wu F et al (2017) Super-tough hydrogels from shape-memory polyurethane with wide-adjustable mechanical properties. J Mater Sci 52(8):4421–4434. https://doi.org/10.1007/s10853-016-0689-7

    Article  CAS  Google Scholar 

  24. Naficy S, Spinks GM, Wallace GG (2014) Thin, tough, pH-sensitive hydrogel films with rapid load recovery. ACS Appl Mater Interfaces 6(6):4109–4114

    Article  CAS  Google Scholar 

  25. Dinu MV, Perju MM, Drăgan ES (2011) Porous semi-interpenetrating hydrogel networks based on dextran and polyacrylamide with superfast responsiveness. Macromol Chem Phys 212(3):240–251

    Article  CAS  Google Scholar 

  26. Hoy RS, Robbins MO (2006) Strain hardening of polymer glasses: effect of entanglement density, temperature, and rate. J Polym Sci, Part B: Polym Phys 44(24):3487–3500

    Article  CAS  Google Scholar 

  27. Flory PJ (1944) Network structure and the elastic properties of vulcanized rubber. Chem Rev 35(1):51–75

    Article  CAS  Google Scholar 

  28. Chen Q et al (2015) A novel design strategy for fully physically linked double network hydrogels with tough, fatigue resistant, and self-healing properties. Adv Funct Mater 25(10):1598–1607

    Article  CAS  Google Scholar 

  29. Li G et al (2015) Poly(vinyl alcohol)–poly(ethylene glycol) double-network hydrogel: a general approach to shape memory and self-healing functionalities. Langmuir 31(42):11709–11716

    Article  CAS  Google Scholar 

  30. Itagaki H et al (2010) Water-induced brittle-ductile transition of double network hydrogels. Macromolecules 43(22):9495–9500

    Article  CAS  Google Scholar 

  31. Shibayama M (2012) Structure-mechanical property relationship of tough hydrogels. Soft Matter 8(31):8030

    Article  CAS  Google Scholar 

  32. Litvinov VM et al (2011) Morphology, chain dynamics, and domain sizes in highly drawn gel-spun ultrahigh molecular weight polyethylene fibers at the final stages of drawing by SAXS, WAXS, and 1H solid-state NMR. Macromolecules 44(23):9254–9266

    Article  CAS  Google Scholar 

  33. Miao M, Xin JH (2017) Engineering of high-performance textiles. Woodhead Publishing, Cambridge

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support from the National Natural Science Foundation of China (NSFC 51373146) and Hong Kong GRF fund (PolyU 152046/14E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Fei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Chen, L., Wang, Y. et al. Tough and stretchy double-network hydrogels based on in situ interpenetration of polyacrylamide and physically cross-linked polyurethane. J Mater Sci 54, 12131–12144 (2019). https://doi.org/10.1007/s10853-019-03729-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03729-9

Navigation