Skip to main content
Log in

Detecting Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder Using Multimodal Time-Frequency Analysis with Machine Learning Using the Electroretinogram from Two Flash Strengths

  • Original Article
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Purpose

Autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) are conditions that similarly alter cognitive functioning ability and challenge the social interaction, attention, and communication skills of affected individuals. Yet these are distinct neurological conditions that can exhibit diverse characteristics which require different management strategies. It is desirable to develop tools to assist with early distinction so that appropriate early interventions and support may be tailored to an individual’s specific requirements. The current diagnostic procedures for ASD and ADHD require a multidisciplinary approach and can be lengthy. This study investigated the potential of electroretinogram (ERG), an eye test measuring retinal responses to light, for rapid screening of ASD and ADHD. Methods: Previous studies identified differences in ERG amplitude between ASD and ADHD, but this study explored time-frequency analysis (TFS) to capture dynamic changes in the signal. ERG data from 286 subjects (146 control, 94 ASD, 46 ADHD) was analyzed using two TFS techniques. Results: Key features were selected, and machine learning models were trained to classify individuals based on their ERG response. The best model achieved 70% overall accuracy in distinguishing control, ASD, and ADHD groups. Conclusion: The ERG to the stronger flash strength provided better separation and the high frequency dynamics (80–300 Hz) were more informative features than lower frequency components. To further improve classification a greater number of different flash strengths may be required along with a discrimination comparison to participants who meet both ASD and ADHD classifications and carry both diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo F. Posada-Quintero.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjur, S.M., Diaz, L.R.M., Lee, I.O. et al. Detecting Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder Using Multimodal Time-Frequency Analysis with Machine Learning Using the Electroretinogram from Two Flash Strengths. J Autism Dev Disord (2024). https://doi.org/10.1007/s10803-024-06290-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10803-024-06290-w

Keywords

Navigation