Skip to main content
Log in

Malvidin alleviates LPS-induced septic intestinal injury through the nuclear factor erythroid 2-related factor 2/reactive oxygen species/NLRP3 inflammasome pathway

  • Short Communication
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Emerging evidence suggests that the gastrointestinal tract plays a crucial role in the pathophysiology of sepsis, a leading cause of mortality among patients admitted to the intensive care unit (ICU). Malvidin, belonging to the flavonoid family of compounds, exhibits a range of capabilities including anti-inflammatory and antioxidant properties. Studies have demonstrated that Malvidin exhibits a dose-dependent effect in mitigating sepsis-induced intestinal injury. The advantageous impact of Malvidin in safeguarding against sepsis-induced intestinal injury is associated with its capacity to counteract oxidative stress, inhibit cellular apoptosis, diminish the secretion of pro-inflammatory cytokines, and regulate the synthesis of inflammasomes. The findings indicate that Malvidin, a natural compound, exhibits protective effects on the gut by activating the nuclear factor erythroid 2-related factor 2/reactive oxygen species/NLRP3 inflammasome pathway. These results have significant implications for potential clinical applications and offer valuable insights into the treatment of sepsis-induced intestinal injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Data availability

Data will be made available on reasonable request.

References

  • Adelman MW, Woodworth MH, Langelier C, Busch LM, Kempker JA, Kraft CS, Martin GS (2020) The gut microbiome’s role in the development, maintenance, and outcomes of sepsis. Crit Care 24:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Agudelo-Ochoa GM, Valdés-Duque BE, Giraldo-Giraldo NA, Jaillier-Ramírez AM, Giraldo-Villa A, Acevedo-Castaño I, Yepes-Molina MA, Barbosa-Barbosa J, Benítez-Paéz A (2020) Gut microbiota profiles in critically Ill patients, potential biomarkers and risk variables for sepsis. Gut Microbes 12:1707610

    Article  PubMed  PubMed Central  Google Scholar 

  • Busch K, Kny M, Huang N, Klassert TE, Stock M, Hahn A, Graeger S, Todiras M, Schmidt S, Chamling B, Willenbrock M, Groß S, Biedenweg D, Heuser A, Scheidereit C, Butter C, Felix SB, Otto O, Luft FC, Slevogt H, Fielitz J (2021) Inhibition of the Nlrp3/Il-1β axis protects against sepsis-induced cardiomyopathy. J Cachexia Sarcopenia Muscle 12:1653–1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Cecconi M, Evans L, Levy M, Rhodes A (2018) Sepsis and septic shock. Lancet 392:75–87

    Article  PubMed  Google Scholar 

  • Chen F, Chu C, Wang X, Yang C, Deng Y, Duan Z, Wang K, Liu B, Ji W, Ding W (2023) Hesperetin attenuates sepsis-induced intestinal barrier injury by regulating neutrophil extracellular trap formation via the ros/autophagy signaling pathway. Food Funct 14:4213–4227

    Article  CAS  PubMed  Google Scholar 

  • Cuenca J, Martín-Sanz P, Alvarez-Barrientos AM, Boscá L, Goren N (2006) Infiltration of inflammatory cells plays an important role in matrix metalloproteinase expression and activation in the heart during sepsis. Am J Pathol 169:1567–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielski LG, Giustina AD, Bonfante S, Barichello T, Petronilho F (2020) The Nlrp3 inflammasome and its role in sepsis development. Inflammation 43:24–31

    Article  PubMed  Google Scholar 

  • Fan H, Cui J, Liu F, Zhang W, Yang H, He N, Dong Z, Dong J (2022) Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and Nlrp3 pathways and suppressing apoptosis and autophagy. Eur J Pharmacol 933:175252

    Article  CAS  PubMed  Google Scholar 

  • Fay KT, Ford ML, Coopersmith CM (2017) The intestinal microenvironment in sepsis. Biochimica Et Biophysica Acta. Mol Basis Dis 1863:2574–2583

    Article  CAS  Google Scholar 

  • Foerster EG, Mukherjee T, Cabral-Fernandes L, Rocha JDB, Girardin SE, Philpott DJ (2022) How autophagy controls the intestinal epithelial barrier. Autophagy 18:86–103

    Article  CAS  PubMed  Google Scholar 

  • Gustafsson JK, Johansson MEV (2022) The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 19:785–803

    Article  PubMed  Google Scholar 

  • Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, Wang G, Gonzalez FJ (2017) Farnesoid X receptor regulation of the Nlrp3 inflammasome underlies cholestasis-associated sepsis. Cell Metabol 25:856–867

    Article  CAS  Google Scholar 

  • Haussner F, Chakraborty S, Halbgebauer R, Huber-Lang M (2019) Challenge to the intestinal mucosa during sepsis. Front Immunol 10:891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoetelmans R, Van Slooten HJ, Keijzer R, Erkeland S, Van De Velde CJ, Dierendonck JH (2000) Bcl-2 And bax proteins are present in interphase nuclei of mammalian cells. Cell Death Differen 7:384–392

    Article  CAS  Google Scholar 

  • Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the Nalp3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE (2002) Endothelial cell apoptosis in sepsis. Crit Care Med 30:S225–S228

    Article  PubMed  Google Scholar 

  • Hu Q, Ren H, Li G, Wang D, Zhou Q, Wu J, Zheng J, Huang J, Slade DA, Wu X, Ren J (2019) Sting-mediated intestinal barrier dysfunction contributes to lethal sepsis. EBioMedicine 41:497–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang M, Cai S, Su J (2019) The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci 20:5376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley N, Jeltema D, Duan Y, He Y (2019) The Nlrp3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20:3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-Are pathway. Annu Rev Pharmacol Toxicol 47:89–116

    Article  CAS  PubMed  Google Scholar 

  • Lechuga S, Ivanov AI (2017) Disruption of the epithelial barrier during intestinal inflammation: quest for new molecules and mechanisms. Biochimica Et Biophysica Acta. Mol Cell Res 1864:1183–1194

    CAS  Google Scholar 

  • Lee WL, Slutsky AS (2010) Sepsis and endothelial permeability. N Engl J Med 363:689–691

    Article  CAS  PubMed  Google Scholar 

  • Li M, Meng Z, Yu S, Li J, Wang Y, Yang W, Wu H (2022a) Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating Gpx4/Acsl4/Acsl3 axis. Chem Biol Interact 366:110137

    Article  CAS  PubMed  Google Scholar 

  • Li Y-Y, Wang X-J, Su Y-L, Wang Q, Huang S-W, Pan Z-F, Chen Y-P, Liang J-J, Zhang M-L, Xie X-Q, Wu Z-Y, Chen J-Y, Zhou L, Luo X (2022b) Baicalein ameliorates ulcerative colitis by improving intestinal epithelial barrier via Ahr/Il-22 pathway in Ilc3s. Acta Pharmacol Sin 43:1495–1507

    Article  CAS  PubMed  Google Scholar 

  • Liu B-Y, Li L, Liu G-L, Ding W, Chang W-G, Xu T, Ji X-Y, Zheng X-X, Zhang J, Wang J-X (2021) Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin 42:701–714

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Huang S-Y, Sun J-H, Zhang H-C, Cai Q-L, Gao C, Li L, Cao J, Xu F, Zhou Y, Guan C-X, Jin S-W, Deng J, Fang X-M, Jiang J-X, Zeng L (2022) Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res 9:56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahidhara R, Billiar TR (2000) Apoptosis in sepsis. Crit Care Med 28:N105–N113

    Article  CAS  PubMed  Google Scholar 

  • Minton K (2022) Intestinal barrier protection. Nat Rev Immunol 22:144–145

    Article  CAS  PubMed  Google Scholar 

  • Mowat AM, Agace WW (2014) Regional specialization within the intestinal immune system. Nat Rev Immunol 14:667–685

    Article  CAS  PubMed  Google Scholar 

  • Mushtaq A, Kazi F (2022) Updates in sepsis management. Lancet Infect Dis 22:24

    Article  PubMed  Google Scholar 

  • Naama M, Telpaz S, Awad A, Ben-Simon S, Harshuk-Shabso S, Modilevsky S, Rubin E, Sawaed J, Zelik L, Zigdon M, Asulin N, Turjeman S, Werbner M, Wongkuna S, Feeney R, Schroeder BO, Nyska A, Nuriel-Ohayon M, Bel S (2023) Autophagy controls mucus secretion from intestinal goblet cells by alleviating er stress. Cell Host Microbe 31:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu L, Qiao W, Hu Z, Li N, Huang Q, Gong J, Li Q, Zhu W, Li J (2011) Berberine attenuates lipopolysaccharide-induced impairments of intestinal glutamine transport and glutaminase activity in rat. Fitoterapia 82:323–330

    Article  CAS  PubMed  Google Scholar 

  • Patel KK, Stappenbeck TS (2013) Autophagy and intestinal homeostasis. Annu Rev Physiol 75:241–262

    Article  CAS  PubMed  Google Scholar 

  • Qiu P, Liu Y, Zhang J (2019) Review: the role and mechanisms of macrophage autophagy in sepsis. Inflammation 42:6–19

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho J-K (2008) Role of cytokines in inflammatory bowel disease. World J Gastroenterol 14:4280–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi X, Tan S, Tan S (2021) Nlrp3 inflammasome in sepsis (Review). Mol Med Rep 24:1–18

    Article  Google Scholar 

  • Tang S-Y, Zhang S-W, Zhang J, Dong J-T, Wu J-D, Guo P, Yang J-T, Zhang W-J, Wu F (2018) Effect of early fluid resuscitation combined with low dose cyclophosphamide on intestinal barrier function in severe sepsis rats. Drug Deliv Translat Res 8:1254–1264

    Article  CAS  Google Scholar 

  • Yoseph BP, Klingensmith NJ, Liang Z, Breed ER, Burd EM, Mittal R, Dominguez JA, Petrie B, Ford ML, Coopersmith CM (2016) Mechanisms of intestinal barrier dysfunction in sepsis. Shock 46:52–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Lian B, Zhang R, Guo Y, Zhao J, He S, Bai Y, Wang N, Lin Y, Wang X, Liu Q, Xu X (2022) Emodin ameliorates intestinal dysfunction by maintaining intestinal barrier integrity and modulating the microbiota in septic mice. Mediators Inflamm 2022:5026103

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao P, Li X, Yang Q, Lu Y, Wang G, Yang H, Dong J, Zhang H (2022) Malvidin alleviates mitochondrial dysfunction and ros accumulation through activating Ampk-Α/Ucp2 axis, thereby resisting inflammation and apoptosis in sae mice. Front Pharmacol 13:1038802

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Verne GN (2018) Intestinal hyperpermeability: a gateway to multi-organ failure? J Clin Investig 128:4764–4766

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A Role for mitochondria in Nlrp3 inflammasome activation. Nature 469:221–225

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Basic Science (Natural Science) Research Project of Higher Education of Jiangsu Province (No. 21KJB230001), Open-end Funds of Jiangsu Key Laboratory of Marine Bioresources and Environment (No. SH20221203), and the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

Funding

Basic Science (Natural Science) Research Project of Higher Education of Jiangsu Province, No. 21KJB230001, Jingquan Dong, Open-end Funds of Jiangsu Key Laboratory of Marine Bioresources and Environment, No. SH20221203, Jingquan Dong, the 2022 Medical Research guiding Project of Jiangsu Provincial Health Commission, No. Z2022070, Jingquan Dong, the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

Author information

Authors and Affiliations

Authors

Contributions

GW and FM: research design, writing original draft, and editing. FM: conceptualization, software, formal analysis, and visualization. WZ, and YX: investigation and data curation. KP: methodology. YW and JD: data curation, resources, and project administration.

Corresponding authors

Correspondence to Yan Wang or Jingquan Dong.

Ethics declarations

Conflict of interest

Guanglu WANG, Fenfen Ma, Wei ZHANG, Yue XIN, Kaixin PING,Yan Wang, Jingquan DONG declare that they have no conflict of interest.

Ethical approval

The "Animal Welfare and Ethics Committee of Jiangsu Ocean University," the "Principles of Laboratory Animal Care" (NIH Publication No. 85–23, amended in 1985), and the NIPRD calibration protocols (NIPRD/05.03.05–1) were all rigorously adhered to in our animal investigations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Ma, F., Zhang, W. et al. Malvidin alleviates LPS-induced septic intestinal injury through the nuclear factor erythroid 2-related factor 2/reactive oxygen species/NLRP3 inflammasome pathway. Inflammopharmacol 32, 893–901 (2024). https://doi.org/10.1007/s10787-023-01378-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-023-01378-8

Keywords

Navigation