Skip to main content
Log in

Influence of Co2+ on the structural and magnetic properties of substituted magnetites obtained by the coprecipitation method

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

In this paper we report the effect of divalent cobalt on the structural and magnetic properties of substituted magnetites, Fe 3−x Co x O 4, with γ=Co 2+/Fe = 0, 5, 10, 15, 20 and 30 % wt, synthesized by the coprecipitation method. The samples were characterized by Atomic Absorption Spectroscopy, X-ray Diffraction, room temperature Mössbauer Spectroscopy and Vibrating Sample Magnetometry. The effect of Co 2+ was found to depend strongly of the concentration employed in the synthesis process. For γ≤15 % the Co 2+ promotes the formation of particles more crystalline and with higher saturation magnetization, remanence and coercivity than those obtained in absence of this cation. A sequential increasing of the lattice parameter is observed, as well as a reduction in the hyperfine magnetic field of the Fe 2.5+sub spectrum, while the hyperfine magnetic field of the Fe 3+sub spectrum keeps almost constant. For γ=20 % and 30 % the crystallinity of the samples decreases, particle size distribution effects are evidenced and the saturation magnetization decreases drastically. The results suggest that for low Co 2+ contents the substitution of Fe 3+by Co 2+ at octahedral sites of the inverse spinel system is the dominant effect, while for the highest concentrations used the substitution of Fe 2+ by Co 2+ and the increasing of the particle size distribution are the dominant effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, I.-H., Wang, C.-C., Chen, C.-Y.: Fabrication and characterization of magnetic cobalt ferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning. Carbon 48, 604–611 (2010)

    Article  Google Scholar 

  2. Hua, J., Liu, M., Wang, L., Xu, S.C., Feng, M., Li, H.B.: Effect of Co 2+ content on the magnetic properties of Co xFe 3−x O 4/SiO 2 nanocomposites. Hyperfine Interact 219, 41–48 (2013)

    Article  ADS  Google Scholar 

  3. Bogush, B.: Application of electroless metal deposition for advanced composite shielding materials. J. Optoelectron. Adv. Mater. 7(3), 1635–1642 (2005)

    MathSciNet  Google Scholar 

  4. Moon, S.K., Jae, G.K.: Microwave-Absorbing Characteristics of NiCoZn Ferrite Prepared by Using a Co-Precipitation Method. Journal of the Korean Physical Society 53(2), 737–741 (2008)

    Article  Google Scholar 

  5. Praveena, K., Srinath, S.: Synthesis and Characterization of CoFe2O4/Polyaniline Nanocomposites for Electromagnetic Interference Applications. J. Nanosci. Nanotechnol. 14, 4371–4376 (2014)

    Article  Google Scholar 

  6. Kumbhar, V.S., Jagadale, A.D., Shinde, N.M., Lokhande, C.D.: Chemical synthesis of spinel cobalt ferrite (CoFe 2 O 4) nano-flakes for supercapacitor application. Appl. Surf. Sci. 259, 39–43 (2012)

    Article  ADS  Google Scholar 

  7. The International Magnetics Association: Soft Ferrite Cores, A User’s Guide. http://www.transformer-assn.org/Soft%20Ferrite%20Cores%20User%20Guide.pdf. Accessed 15 June 2014

  8. Felderhof, B.U.: Flow of a ferrofluid down a tube in an oscillating magnetic field. Phys. Review E 64, 021508–1/021508-7 (2001)

    ADS  Google Scholar 

  9. Bilecka, I., Kubli, M., Amstad, E., Niederberger, M.: Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process. J. Sol.-Gel. Sci. Technol. 57, 313–322 (2011)

    Article  Google Scholar 

  10. Pankhurst, Q.A., Connolly, J., Jones, S.K., Dobson, J.: Application of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167–R181 (2003)

    Article  ADS  Google Scholar 

  11. Cornell, R.M., Schwertmann, U.: The iron oxides, pp. 135, 140. WILEY-VCH Verlag GmbH, D-69469 Weinheim, Germany (2000)

  12. Skoog, D.A., West, D.M., Holler, F.J, Crouch, S.R.: Fundamentals of Analytical Chemistry, Ninth Edition. Brooks/Cole, Cengage Learning, pp. 289 (2013)

  13. Dong, C.: PowderX: Windows-95-based program for powder X-ray diffraction data processing. J Appl Crystallogr 32, 168–173 (1999)

    Article  Google Scholar 

  14. Zhang, H.G., Zhang, Y.J., Wang, W.H., Wu, G.H.: Origin of the constricted hysteresis loop in cobalt ferrites revisited. J. Magn. Magn. Mater. 323, 1980–1984 (2011)

    Article  ADS  Google Scholar 

  15. Monshi, A., Reza Foroughi, M., Reza Monshi, M.: Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering 2, 154–160 (2012)

    Article  ADS  Google Scholar 

  16. Vandenberghe, R., De Grave, E., De Bakker, P.M.A.: On the methodology of the analysis of Mössbauer spectra. Hyperfine Interact 83, 29–49 (1994)

    Article  ADS  Google Scholar 

  17. Willard, M.A., Nakamura, Y., Laughlin, D.E., McHenry, M.E.: Magnetic Properties of Ordered and Disordered Spinel-Phase Ferrimagnets. J. Am. Ceram. Soc. 82 [12], 3342–3346 (1999)

    MATH  Google Scholar 

  18. Sorescu, M., Oberst, T., Gosset, K., Tarabasanu, D., Diamandescu, L.: Direct Evidence for Cobalt Substitution Effects in Magnetite. Solid State Commun. 113 (10), 573–575 (2000)

    Article  ADS  Google Scholar 

  19. da Costa, G.M., Andujar, C.B., De Grave, E., Pankhurst, Q.: Magnetite, non-stoichiometric magnetite and maghemite: Can they be distinguished by Mössbauer spectroscopy?. ICAME 2013 - International Conference on the Applications of the Mössbauer Effect, Opatija, Croatia, 1-6 September 2013. http://www.icame2013opatija.com/system/file/249/da_Costa_P2.pdf. Accessed 15 December 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Velásquez.

Additional information

Proceedings of the 14th Latin American Conference on the Applications of the Mössbauer Effect (LACAME 2014), Toluca, Mexico, 10-14 November 2014

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velásquez, A.A., Urquijo, J.P. Influence of Co2+ on the structural and magnetic properties of substituted magnetites obtained by the coprecipitation method. Hyperfine Interact 232, 97–110 (2015). https://doi.org/10.1007/s10751-015-1122-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-015-1122-3

Keywords

Navigation