Skip to main content

Advertisement

Log in

Glycosylated SARs Cov 2 interaction with plant lectins

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lectins are non-immune carbohydrate-binding proteins/glycoproteins that are found everywhere in nature, from bacteria to human cells. They have also been a valuable biological tool for the purification and subsequent characterisation of glycoproteins due to their carbohydrate binding recognition capacity. Antinociceptive, antiulcer, anti-inflammatory activities and immune modulatory properties have been discovered in several plant lectins, with these qualities varying depending on the lectin carbohydrate-binding site. The Coronavirus of 2019 (COVID-19) is a respiratory disease that has swept the globe, killing millions and infecting millions more. Despite the availability of COVID-19 vaccinations and the vaccination of a huge portion of the world's population, viral infection rates continue to rise, causing major concern. Part of the reason for the vaccine's ineffectiveness has been attributed to repeated mutations in the virus's epitope determinant elements. The surface of the Coronavirus envelope is heavily glycosylated, with approximately sixty N-linked oligomannose, composite, and hybrid glycans covering the core of Man3GlcNAc2Asn. Some O–linked glycans have also been discovered. Many of these glyco-chains have also been subjected to multiple mutations, with only a few remaining conserved. As a result, numerous plant lectins with specificity for these viral envelope sugars have been discovered to interact preferentially with them and are being investigated as a potential future tool to combat coronaviruses such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by preventing viral attachment to the host. The review will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammation and its immune modulating effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The authors declares that the manuscript lacks any information necessary to access the dataset and other supporting files.

References

  1. Colgan, S.P., et al.: Receptors involved in carbohydrate binding modulate intestinal epithelialneutrophil interactions. J. Biol. Chem. 270(18), 10531–10539 (1995). https://doi.org/10.1074/jbc.270.18.1053121

    Article  CAS  PubMed  Google Scholar 

  2. Gorelik, E., Galili, U., Raz, A.: On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20(3–4), 245–277 (2001). https://doi.org/10.1023/a:1015535427597

    Article  CAS  PubMed  Google Scholar 

  3. Hevey, R.: Strategies for the development of Glycomimetic drug candidates. Pharmaceuticals 12(2), 55 (2019). https://doi.org/10.3390/ph12020055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nardy, A.F.F.R., Freire-de-Lima, L., Freire-de-Lima, C.G., Morrot, A.: The sweet side of immune evasion: Role of glycans in the mechanisms of cancer progression. Front. Oncol. 6, 54 (2016). https://doi.org/10.3389/fonc.2016.00054

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brandley, B.K., Schnaar, R.L.: Cell-surface carbohydrates in cell recognition and response. J. Leukoc. Biol. 40(1), 97–111 (1986). https://doi.org/10.1002/jlb.40.1.97

    Article  CAS  PubMed  Google Scholar 

  6. Jones, M.B., Kansiime, F., Saunders, M.J.: The potential use of papyrus (Cyperus papyrus L.) wetlands as a source of biomass energy for sub-Saharan Africa. GCB Bioenergy 10(1), 4–11 (2018). https://doi.org/10.1111/gcbb.12392

    Article  Google Scholar 

  7. Sofowora, A., et al.: The role and place of medicinal plants in the strategies for disease prevention. J. Altern. Complement. Med. 10(5), 210–229 (2013). https://doi.org/10.4314/ajtcam.v10i5.2

    Article  Google Scholar 

  8. Spilatro, S.R., et al.: Characterization of a new lectin of soy bean vegetative tissues. Plant Physiol 110(3), 825–834 (1996). https://doi.org/10.1104/pp.110.3.825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ahmadiani, A., Fereidoni, M., Semnanian, S., Kamalinejad, M., Saremi, S.: Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J. Ethnopharmacol. 61(3), 229–235 (1998). https://doi.org/10.1016/s0378-8741(98)00043-9

    Article  CAS  PubMed  Google Scholar 

  10. Sharon, N., Lis, H.: History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 14(11), 53R-62R (2004). https://doi.org/10.1093/glycob/cwh122

    Article  CAS  PubMed  Google Scholar 

  11. Sharon, N., Lis, H.: Microbial lectins and their glycoprotein receptors. New Compr. Biochem. 29, 475–506 (1997). https://doi.org/10.1016/S0167-7306(08)60626-2

    Article  Google Scholar 

  12. Goldstein, I.J., et al.: What should be called a lectin? Nature 285(5760), 66–66 (1980)

    Article  Google Scholar 

  13. Gomes, F.S., et al.: Antimicrobial lectin from S Chinus terebinthifolius leaf. J Appl Microbiol 114(3), 372–379 (2013)

    Article  Google Scholar 

  14. Dias, R.O., Machado, L.S., Migliolo, L., Franco, O.L.: Insights into animal and plant lectins with antimicrobial activities. Molecules 20(1), 519–541 (2015). https://doi.org/10.3390/molecules20010519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kilpatrick, D.C., Pusztai, A., Grant, G., Graham, C., Ewen, S.W.B.: Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects. FEBS Lett. 185, 299–305 (1985)

    Article  CAS  PubMed  Google Scholar 

  16. Reyes-Montaño, E. A., & Vega-Castro, N. (2018). Plant lectins with insecticidal and insectistatic activities. Insecticides Agriculture and Toxicology, Ghousia Begum, IntechOpen. https://www.intechopen.com/chapters/60115. https://doi.org/10.5772/intechopen.74962

  17. Mishra, A., et al.: Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 134, 110827 (2019). https://doi.org/10.1016/j.fct.2019.110827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mo, H., et al.: Purification and characterization of Dolichos lablab lectin. Glycobiology. 9(2), 173–179 (1999). https://doi.org/10.1093/glycob/9.2.173

    Article  CAS  PubMed  Google Scholar 

  19. Roopashree, S., Singh, S.A., Gowda, L.R., Rao, A.G.: Dual-function protein in plant defence: Seed lectin from Dolichos biflorus (horse gram) exhibits lipoxygenase activity. Biochemical Journal 395(3), 629–639 (2006). https://doi.org/10.1042/BJ20051889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sathe, S. K., & Deshpande, S. S. (2003). Beans. In B. Caballero (Ed.), Encyclopedia of Food Science and Nutrition (2nd ed) (pp. 403–412) 

  21. Spilatro, S.R., Cochran, G.R., Walker, R.E., Cablish, K.L., Bittner, C.C.: Characterization of a new lectin of soybean vegetative tissues. Plant Physiol. 110(3), 825–834 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Freeze, H.H.: Lectin Affinity Chromatography. Current Protocols in Protein Science (1995). https://doi.org/10.1002/0471140864.ps0901s00

    Article  Google Scholar 

  23. O’Connor, B.F., et al.: Lectin Affinity Chromatography (LAC). Methods Mol. Biol. 1485, 411–420 (2017). https://doi.org/10.1007/978-1-4939-6412-3_23

    Article  CAS  PubMed  Google Scholar 

  24. Coelho, B.B., L. C., et al.: Lectins as antimicrobial agents. J. Appl. Microbiol. 125(5), 1238–1252 (2018). https://doi.org/10.1111/jam.14055

    Article  CAS  Google Scholar 

  25. Gaofu, Q., et al.: In vitro assessment of plant lectins with anti-pinwood nematode activity. J. Appl. Microbiol. 98(1), 40–45 (2008). https://doi.org/10.1016/j.jip.2007.11.00422

    Article  Google Scholar 

  26. Lusvarghi, S., Bewley, C.A.: Griffithsin: An antiviral lectin with outstanding therapeutic potential. Viruses (2016). https://doi.org/10.3390/v8100296

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pinto, I.R., Chaves, H.V., Vasconcelos, A.S., de Sousa, F.C.F., Santi-Gadelha, T., de Lacerda, J.T.J.G., Ribeiro, K.A., Freitas, R.S., Maciel, L.M., Filho, S.M.P., Viana, A.F.S.C., de Almeida Gadelha, C.A., Filho, G.C., de Paulo Teixeira Pinto, V., Pereira, K. M. A., Rodrigues e Silva, A. A., & Bezerra, M. M.: Antiulcer and Antioxidant Activity of a Lectin from Mucuna pruriens Seeds on ethanol- induced gastropathy: Involvement of Alpha-2 adrenoceptors and prostaglandins. Curr. Pharm. Des. 25(12), 1430–1439 (2019). https://doi.org/10.2174/1381612825666190524081433

    Article  CAS  PubMed  Google Scholar 

  28. VanderLei, E.S., Patoilo, K.K., Lima, N.A., Lima, A.P., Rodrigues, J.A., Silva, L.M., Lima, M.E., Lima, V., Benevides, N.M.: Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int. Immunopharmacol. 10(9), 1113–1118 (2010). https://doi.org/10.1016/j.intimp.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  29. Hu, B., Guo, H., Zhou, P., Shi, Z.L.: Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19(3), 141–154 (2021). https://doi.org/10.1038/s41579-020-00459-7

    Article  CAS  PubMed  Google Scholar 

  30. Baraniuk, C.: Covid-19: How effective are vaccines against the delta variant? BMJ 374, n1960 (2021). https://doi.org/10.1136/bmj.n1960

    Article  PubMed  Google Scholar 

  31. Hayawi, K., Shahriar, S., Serhani, M.A., Alashwal, H., Masud, M.M.: Vaccine versus Variants (3Vs): Are the COVID-19 vaccines Effective against the Variants? A Systematic Review. Vaccines 9(11), 1305 (2021). https://doi.org/10.3390/vaccines9111305

    Article  CAS  PubMed  Google Scholar 

  32. Khan, A., Khan, T., Ali, S., Aftab, S., Wang, Y., Qiankun, W., Khan, M., Suleman, M., Ali, S., Heng, W., Ali, S.S., Wei, D.Q., Mohammad, A.: SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed. Pharmacother. 143, 112176 (2021). https://doi.org/10.1016/j.biopha.2021.112176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahmed, M.N., Jahan, R., Nissapatorn, V., Wilairatana, P., Rahmatullah, M.: Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed. Pharmacother. 146, 112507 (2022). https://doi.org/10.1016/j.biopha.2021.112507

    Article  CAS  PubMed  Google Scholar 

  34. Barre, A., Van Damme, E.J.M., Simplicien, M., Le Poder, S., Klonjkowski, B., Benoist, H., Peyrade, D., Rougé, P.: Man-specific lectins from plants, fungi, algae and Cyanobacteria, as potential blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) coronaviruses: Biomedical perspectives. Cells (2021). https://doi.org/10.3390/cells10071619

    Article  PubMed  PubMed Central  Google Scholar 

  35. Martinez, D., Amaral, D., Markovitz, D., Pinto, L.: The use of lectins as tools to combat SARS-CoV-2. Curr. Pharm. Des. 27(41), 4212–4222 (2021). https://doi.org/10.2174/1381612827666210830094743

    Article  CAS  PubMed  Google Scholar 

  36. Hsieh, P.K., Chang, S.C., Huang, C.C., Lee, T.T., Hsiao, C.W., Kou, Y.H., Chen, I.Y., Chang, C.K., Huang, T.H., Chang, M.F.: Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79(22), 13848–13855 (2005). https://doi.org/10.1128/JVI.79.22.13848-13855.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boechat, J.L., Chora, I., Morais, A., Delgado, L.: The immune response to SARS-CoV-2 and COVID-19 immunopathology—Current perspectives. Pulmonology 27(5), 423–437 (2021). https://doi.org/10.1016/j.pulmoe.2021.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, H.C., Lai, Y.J., Liao, C.C., Yang, W.F., Huang, K.B., Lee, I.J., Chou, W.C., Wang, S.H., Wang, L.H., Hsu, J.M., Sun, C.P., Kuo, C.T., Wang, J., Hsiao, T.C., Yang, P.J., Lee, T.A., Huang, W., Li, F.A., Shen, C.Y., Li, C.W.: Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine 74, 103712 (2021). https://doi.org/10.1016/j.ebiom.2021.103712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shajahan, A., Pepi, L.E., Rouhani, D.S., Heiss, C., Azadi, P.: Glycosylation of SARS-CoV-2: Structural and functional insights. Anal. Bioanal. Chem. 413(29), 7179–7193 (2021). https://doi.org/10.1007/s00216-021-03499-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Coltri, K.C., Oliveira, L.L., Pinzan, C.F., Vendruscolo, P.E., Martinez, R., Goldman, M.H., Panunto-Castelo, A., Roque-Barreira, M.C.: Therapeutic administration of KM+ lectin protects mice against Paracoccidioides brasiliensis infection via interleukin-12 production in a toll-like receptor 2-dependent mechanism. Am. J. Pathol. 173(2), 423–432 (2008). https://doi.org/10.2353/ajpath.2008.080126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Takeda, K., Akira, S.: Toll receptors and pathogen resistance. Cell. Microbiol. 5(3), 143–153 (2003). https://doi.org/10.1046/j.1462-5822.2003.00264.x

    Article  CAS  PubMed  Google Scholar 

  42. Zalpoor, H., Akbari, A., & Ephrin, N.-A. M. (2022). (Eph) receptor and downstream signaling pathways: A promising potential targeted therapy for COVID‑19 and associated cancers and diseases. Human Cell, 1–14

  43. Zhao, X., Chen, H., Wang, H.: Glycans of SARS-CoV-2 spike protein in virus infection and antibody production. Frontiers in Molecular Biosciences (2021). https://doi.org/10.3389/fmolb.2021.629873

    Article  PubMed  PubMed Central  Google Scholar 

  44. Altulea, D., et al.: What makes (hydroxy) chloroquine ineffective against COVID-19: Insights from cell biology. J. Mol. Cell Biol. 13(3), 175–184 (2021). https://doi.org/10.1093/jmcb/mjab016%JJournalofMolecularCellBiology

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ferner, R.E., Aronson, J.K.: Chloroquine and hydroxychloroquine in covid-19. BMJ 369, m1432 (2020). https://doi.org/10.1136/bmj.m1432

    Article  PubMed  Google Scholar 

  46. El Bairi, K., Trapani, D., Petrillo, A., Le Page, C., Zbakh, H., Daniele, B., Belbaraka, R., Curigliano, G., Afqir, S.: Repurposing anticancer drugs for the management of COVID-19. Eur. J. Cancer 141, 40–61 (2020). https://doi.org/10.1016/j.ejca.2020.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Greig, A.S., Bouillant, A.M.: Binding effects of concanavalin A on a coronavirus. Canadian Journal of Comparative Medicine: Revue Canadienne de Medecine Comparee 41(1), 122–126 (1977)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Shibuya, N., Goldstein, I.J., Shafer, J.A., Peumans, W.J., Broekaert, W.F.: Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin. Arch. Biochem. Biophys. 249(1), 215–224 (1986). https://doi.org/10.1016/0003-9861(86)90577-1

    Article  CAS  PubMed  Google Scholar 

  49. Kumaki, Y., Wandersee, M.K., Smith, A.J., Zhou, Y., Simmons, G., Nelson, N.M., Bailey, K.W., Vest, Z.G., Li, J.K., Chan, P.K., Smee, D.F., Barnard, D.L.: Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin. Urtica dioica agglutinin. Antiviral Research 90(1), 22–32 (2011). https://doi.org/10.1016/j.antiviral.2011.02.003

    Article  CAS  PubMed  Google Scholar 

  50. Saul, F.A., Rovira, P., Boulot, G., Van Damme, E.J., Peumans, W.J., Truffa-Bachi, P., Bentley, G.A.: Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Structure. Academic Press 8(6), 593–603 (2000). https://doi.org/10.1016/S0969-2126(00)00142-8

    Article  CAS  Google Scholar 

  51. Millet, J.K., Séron, K., Labitt, R.N., Danneels, A., Palmer, K.E., Whittaker, G.R., Dubuisson, J., Belouzard, S.: Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res. 133, 1–8 (2016). https://doi.org/10.1016/j.antiviral.2016.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alexandre, K.B., Gray, E.S., Pantophlet, R., Moore, P.L., McMahon, J.B., Chakauya, E., O’Keefe, B.R., Chikwamba, R., Morris, L.: Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J. Virol. 85(17), 9039–9050 (2011). https://doi.org/10.1128/JVI.02675-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fischer, K., Nguyen, K., LiWang, P.J.: Griffithsin retains anti-HIV-1 potency with changes in gp120 glycosylation and complements broadly neutralizing antibodies PGT121 and PGT126. Antimicrob. Agents Chemother. 64(1), e01084-e1119 (2019). https://doi.org/10.1128/AAC.01084-19

    Article  PubMed  PubMed Central  Google Scholar 

  54. Swanson, M.D., et al.: A lectin isolated from bananas is a potent inhibitor of HIV replication. Int. J. Biol. Chem. 285(12), 8646–8655 (2010). https://doi.org/10.1074/jbc.M109.034926

    Article  CAS  Google Scholar 

  55. Keyaerts, E., Vijgen, L., Pannecouque, C., Van Damme, E., Peumans, W., Egberink, H., Balzarini, J., Van Ranst, M.: Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 75(3), 179–187 (2007). https://doi.org/10.1016/j.antiviral.2007.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Auth, J., Fröba, M., Große, M., Rauch, P., Ruetalo, N., Schindler, M., Morokutti-Kurz, M., Graf, P., Dolischka, A., Prieschl-Grassauer, E., Setz, C., Schubert, U.: Lectin from Triticum vulgaris (WGA) inhibits infection with SARS-CoV-2 and its variants of concern alpha and beta. Int. J. Mol. Sci. 22(19), 10205 (2021). https://doi.org/10.3390/ijms221910205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Garcia-Pino, A., Buts, L., Wyns, L., Imberty, A., Loris, R.: How a plant lectin recognizes high mannose oligosaccharides. Plant Physiol. 144(4), 1733–1741 (2007). https://doi.org/10.1104/pp.107.100867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Charan, R.D., Munro, M.H., O’Keefe, B.R., Rcii, S., McKee, T.C., Currens, M.J., Pannell, L.K., Boyd, M.R.: Isolation and characterization of myrianthus holstii lectin, a potent HIV-1 inhibitory protein from the plant myrianthus holstii (1). J. Nat. Prod. 63(8), 1170–1174 (2000). https://doi.org/10.1021/np000039h

    Article  CAS  PubMed  Google Scholar 

  59. David, M., et al.: A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARSCoV-2 and MERS-CoV infection in vivo. Cell Rep Med (2022). https://doi.org/10.1016/j.xcrm.2022.100774

    Article  Google Scholar 

  60. Koshte, V.L., van Dijk, W., van der Stelt, M.E., Aalberse, R.C.: Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac (banana). Biochemical Journal 272(3), 721–726 (1990). https://doi.org/10.1042/bj2720721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chan, Y.S., Yu, H., Xia, L., Ng, T.B.: Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chinese Medicine 10(1), 25 (2015). https://doi.org/10.1186/s13020-015-0057-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang, W., Li, Q., Wu, J., Hu, Y., Wu, G., Yu, C., Xu, K., Liu, X., Wang, Q., Huang, W., Wang, L., Wang, Y.: Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerging Microbes and Infections 10(1), 1519–1529 (2021). https://doi.org/10.1080/22221751.2021.1957720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. LeVine, D., Kaplan, M.J., Greenaway, P.J.: The purification and characterization of wheat-germ agglutinin. Biochemical Journal 129(4), 847–856 (1972). https://doi.org/10.1042/bj1290847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sheehan, S.A., Hamilton, K.L., Retzbach, E.P., Balachandran, P., Krishnan, H., Leone, P., Goldberg, G.S.: Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Research Square. (2020). https://doi.org/10.21203/rs.3.rs-93851/v1

    Article  PubMed  PubMed Central  Google Scholar 

  65. Van Damme, E.J.M., Van Leuven, F., Peumans, W.J.: Isolation, characterization and molecular cloning of the bark lectins from Maackia amurensis. Glycoconj. J. 14(4), 449–456 (1997). https://doi.org/10.1023/A:1018595300863

    Article  PubMed  Google Scholar 

  66. Gordts, S.C., Renders, M., Férir, G., Huskens, D., Van Damme, E.J., Peumans, W., Balzarini, J., Schols, D.: NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J. Antimicrob. Chemother. 70(6), 1674–1685 (2015). https://doi.org/10.1093/jac/dkv034

    Article  CAS  PubMed  Google Scholar 

  67. Kaur, R., Neetu, M., R., Jose, J., Kumar, P., & Tomar, S.: Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology 526, 91–98 (2019). https://doi.org/10.1016/j.virol.2018.10.009

    Article  CAS  PubMed  Google Scholar 

  68. Balzarini, J., Hatse, S., Vermeire, K., Princen, K., Aquaro, S., Perno, C.F., De Clercq, E., Egberink, H., Vanden Mooter, G., Peumans, W., Van Damme, E., Schols, D.: Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob. Agents Chemother. 48(10), 3858–3870 (2004). https://doi.org/10.1128/AAC.48.10.3858-3870.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hwang, H.J., Han, J.W., Jeon, H., Cho, K., Kim, J.H., Lee, D.S., Han, J.W.: Characterization of a Novel mannose-binding Lectin with antiviral Activities from Red Alga. Grateloupia chiangii. Biomolecules 10(2), 333 (2020). https://doi.org/10.3390/biom10020333

    Article  CAS  PubMed  Google Scholar 

  70. Sharma, A. et al. (2009). Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi Beans). Biomed. biotechnol. PubMed: 929568 https://doi.org/10.1155/2009/929568.

  71. Yang, Y., Xu, H.L., Zhang, Z.T., Liu, J.J., Li, W.W., Ming, H., Bao, J.K.: Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. Phytomedicine 18(8–9), 748–755 (2011). https://doi.org/10.1016/j.phymed.2010.11.001

    Article  CAS  PubMed  Google Scholar 

  72. Khan, H., et al.: The analgesic potential of glycosides derived from medicinal plants Daru. DARU: J Pharm Sci 28(1), 387–401 (2020). https://doi.org/10.1007/s40199-019-00319-7

    Article  CAS  Google Scholar 

  73. Bhagat, S., Agarwal, M., Roy, V.: Serratiopeptidase: A systematic review of the existing evidence. Int. J. Surg. 11(3), 209–217 (2013). https://doi.org/10.1016/j.ijsu.2013.01.010

    Article  PubMed  Google Scholar 

  74. Jehan, A. R. N. et al. (2017). Analgesic potential of extracts and derived natural products from medicinal plants, pain relief. In C. Maldonado (Ed.). https://www.intechopen.com/chapters/54987, Analgesics to Alternative Therapies vol. https://doi.org/10.5772/intechopen.68631. IntechOpen.

  75. Karar, M.G.E., Kuhnert, N.: Herbal drugs from Sudan: Traditional uses and phytoconstituents. Pharmacogn. Rev. 11(22), 83–103 (2017). https://doi.org/10.4103/phrev.phrev_15_15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Prashantkumar, P., & Vidyasagar, G. M. (2008). Traditional knowledge on medicinal plants used for the treatment of skin diseases in Bidar district. http://hdl.handle.net/123456789/1588. (CRIS). Karnataka Council of Scientific & Industrial Research (CRIS). vol. India (pp. 273–276).

  77. Kamkar Asl, M., et al.: Analgesic effect of the aqueous and ethanolic extracts of clove. Avicenna Journal of Phytomedicine 3(2), 186–192 (2013)

    PubMed  PubMed Central  Google Scholar 

  78. Uritu, C.M., Mihai, C.T., Stanciu, G.D., Dodi, G., Alexa-Stratulat, T., Luca, A., Leon-Constantin, M.M., Stefanescu, R., Bild, V., Melnic, S., Tamba, B.I.: Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Manage. 2018, 7801543 (2018). https://doi.org/10.1155/2018/7801543

    Article  Google Scholar 

  79. Mogosan, C., Vostinaru, O., Oprean, R., Heghes, C., Filip, L., Balica, G., Moldovan, R.I.: A comparative analysis of the chemical composition, anti-inflammatory, and antinociceptive effects of the essential oils from three species of mentha cultivated in Romania. Molecules 22(2), 263 (2017). https://doi.org/10.3390/molecules22020263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nunes, B.S., Rensonnet, N.S., Dal-Secco, D., Vieira, S.M., Cavada, B.S., Teixeira, E.H., Moura, T.R., Teixeira, C.S., Clemente-Napimoga, J.T., Cunha, F.Q., Napimoga, M.H.: Lectin extracted from Canavalia grandiflora seeds presents potential antiinflammatory and analgesic effects. Naunyn-Schmiedeberg’s Arch. Pharmacol. 379(6), 609–616 (2009). https://doi.org/10.1007/s00210-009-0397-9

    Article  CAS  Google Scholar 

  81. Campos, J.K.L., et al.: Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochim Open 2, 62–68 (2016). https://doi.org/10.1016/j.biopen.2016.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  82. Leite, J.F., Assreuy, A.M., Mota, M.R., Bringel, P.H., Lacerda, R.R., Gomes, V.M., Cajazeiras, J.B., Nascimento, K.S., Pessôa, H.L., Gadelha, C.A., Delatorre, P., Cavada, B.S., Santi-Gadelha, T.: Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds. Molecules 17(3), 3277–3290 (2012). https://doi.org/10.3390/molecules17033277

    Article  CAS  PubMed  Google Scholar 

  83. Sverdén, E., et al.: Peptic ulcer disease. BMJ 367, l5495 (2019). https://doi.org/10.1136/bmj.l5495%JBMJ

    Article  PubMed  Google Scholar 

  84. De Vasconcellos Abdon, A.P., Coelho de Souza, G., Coelho, N., de Souza, L., Prado Vasconcelos, R., Araújo Castro, C., Moreira Guedes, M., Pereira Lima, R.C., de Azevedo Moreira, R., de Oliveira Monteiro-Moreira, A.C., Rolim Campos, A.: Gastroprotective potential of frutalin, a d-galactose binding lectin, against ethanol-induced gastric lesions. Fitoterapia 83(3), 604–608 (2012). https://doi.org/10.1016/j.fitote.2012.01.005

    Article  CAS  PubMed  Google Scholar 

  85. Gorakshakar, A.C., Ghosh, K.: Use of lectins in immunohematology. Asian J Transfus Sci 10(1), 12–21 (2016). https://doi.org/10.4103/0973-6247.172180. (PMID: 27011665; PMCID: PMC4782487)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Van Damme, E.J.M., Peumans, W.J., Barre, A., Rougé, P.: Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17(6), 575–692 (1998)

    Article  Google Scholar 

  87. Van Damme, E.J.M., Lannoo, N., Peumans, W.J.: Plant lectins. Adv. Bot. Res. 48, 107–209 (2008). https://doi.org/10.1016/S0065-2296(08)00403-5

    Article  CAS  Google Scholar 

  88. Olsnes, S., Stirpe, F., Sandvig, K., Pihl, A.: Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J. Biol. Chem. 257(22), 13263–13270 (1982). https://doi.org/10.1016/S0021-9258(18)33440-9

    Article  CAS  PubMed  Google Scholar 

  89. Endo, Y., Tsurugi, K., Franz, H.: The site of action of the A-chain of mistletoe lectin I on eukaryotic ribosomes. The RNA Nglycosidase activity of the protein. FEBS Letters 231(2), 378–380 (1988). https://doi.org/10.1016/0014-5793(88)80853-6

    Article  CAS  PubMed  Google Scholar 

  90. Klopp, R., Schmidt, W., Werner, E., Werner, M., Niemer, W., Beuth, J.: Influence of complementary Viscum album (iscador) administration on microcirculation and immune system of ear, nose and throat carcinoma patients treated with radiation and chemotherapy. Anticancer Res 25(1B), 601–610 (2005)

    CAS  PubMed  Google Scholar 

  91. Hajto, T., Hostanska, K., Gabius, H.J.: Modulatory potency of the beta-galactoside-specific lectin from mistletoe extract (iscador) on the host defense system in vivo in rabbits and patients. Can. Res. 49(17), 4803–4808 (1989)

    CAS  Google Scholar 

  92. Bocci, V.: Mistletoe (Viscum album) lectins as cytokine inducers and immunoadjuvant in tumor therapy. A review: Journal of Biological Regulators and Homeostatic Agents 7(1), 1–6 (1993)

    CAS  PubMed  Google Scholar 

  93. Eck, J., Langer, M., Möckel, B., Baur, A., Rothe, M., Zinke, H., Lentzen, H.: Cloning of the mistletoe lectin gene and characterization of the recombinant A-chain. Eur. J. Biochem. 264(3), 775–784 (1999). https://doi.org/10.1046/j.1432-1327.1999.00638.x

    Article  CAS  PubMed  Google Scholar 

  94. Yoon, T.J., Yoo, Y.C., Kang, T.B., Shimazaki, K., Song, S.K., Lee, K.H., Kim, S.H., Park, C.H., Azuma, I., Kim, J.B.: Lectins isolated from Korean mistletoe (Viscum album coloratum) induce apoptosis in tumor cells. Cancer Lett. 136(1), 33–40 (1999). https://doi.org/10.1016/s0304-3835(98)00300-0

    Article  CAS  PubMed  Google Scholar 

  95. Kang, T.B., Yoo, Y.C., Lee, K.H., Yoon, H.S., Her, E., Kim, J.B., Song, S.K.: Korean mistletoe lectin (KML-IIU) and its subchains induce nitric oxide (NO) production in murine macrophage cells. J. Biomed. Sci. 15(2), 197–204 (2008). https://doi.org/10.1007/s11373-007-9210-2

    Article  CAS  PubMed  Google Scholar 

  96. Park, H.J., Hong, J.H., Kwon, H.J., Kim, Y., Lee, K.H., Kim, J.B., Song, S.K.: TLR4-mediated activation of mouse macrophages by Koreanmistletoe lectin-C (KML-C). Biochem. Biophys. Res. Commun. 396(3), 721–725 (2010). https://doi.org/10.1016/j.bbrc.2010.04.169

    Article  CAS  PubMed  Google Scholar 

  97. Panunto-Castelo, A., Souza, M.A., Roque-Barreira, M.C., Silva, J.S.: KM (+), a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology 11(12), 1035–1042 (2001). https://doi.org/10.1093/glycob/11.12.1035

    Article  CAS  PubMed  Google Scholar 

  98. Yoon, T.J., Yoo, Y.C., Kang, T.B., Her, E., Kim, S.H., Kim, K., Azuma, I., Kim, J.B.: Cellular and humoral adjuvant activity of lectins isolated from Korean mistletoe (Viscum album colaratum). Int. Immunopharmacol. 1(5), 881–889 (2001). https://doi.org/10.1016/s1567-5769(01)00024-8

    Article  CAS  PubMed  Google Scholar 

  99. De Melo, C.M., de Castro, M.C., de Oliveira, A.P., Gomes, F.O., Pereira, V.R., Correia, M.T., Coelho, L.C., Paiva, P.M.: Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother. Res. 24(11), 1631–1636 (2010). https://doi.org/10.1002/ptr.3156

    Article  CAS  PubMed  Google Scholar 

  100. Dong, Q., Sugiura, T., Toyohira, Y., Yoshida, Y., Yanagihara, N., Karasaki, Y.: Stimulation of IFN-gamma production by garlic lectin in mouse spleen cells: Involvement of IL-12 via activation of p38 MAPK and ERK in macrophages. Phytomedicine 18(4), 309–316 (2011). https://doi.org/10.1016/j.phymed.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  101. Carter, J.E., Yu, J., Choi, N.W., Hough, J., Henderson, D., He, D., Langridge, W.H.: Bacterial and plant enterotoxin B subunit-autoantigen fusion proteins suppress diabetes insulitis. Mol. Biotechnol. 32(1), 1–15 (2006). https://doi.org/10.1385/MB:32:1:001

    Article  PubMed  Google Scholar 

  102. Rogerio, A.P., Cardoso, C.R., Fontanari, C., Souza, M.A., Afonso-Cardoso, S.R., Silva, E.V., Koyama, N.S., Basei, F.L., Soares, E.G., Calixto, J.B., Stowell, S.R., Dias-Baruffi, M., Faccioli, L.H.: Anti-asthmatic potential of a D-galactose-binding lectin from Synadenium carinatum latex. Glycobiology 17(8), 795–804 (2007). https://doi.org/10.1093/glycob/cwm053

    Article  CAS  PubMed  Google Scholar 

  103. Carter, J.E., 3rd., Odumosu, O., Langridge, W.H.: Expression of a ricin toxin B subunit: Insulin fusion protein in edible plant tissues. Mol. Biotechnol. 44(2), 90–100 (2010). https://doi.org/10.1007/s12033-009-9217-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Azizi, A., Kumar, A., Diaz-Mitoma, F., Mestecky, J.: Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog. 6(11), e1001147 (2010). https://doi.org/10.1371/journal.ppat.1001147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Jang, M.H., Kweon, M.N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P.D., Hiroi, T., Tamagawa, H., Iijima, H., Kunisawa, J., Yuki, Y., Kiyono, H.: Intestinal villous M cells: An antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. U.S.A. 101(16), 6110–6115 (2004). https://doi.org/10.1073/pnas.0400969101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Manocha, M., Pal, P.C., Chitralekha, K.T., Thomas, B.E., Tripathi, V., Gupta, S.D., Paranjape, R., Kulkarni, S., Rao, D.N.: Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex europaeus-I lectin as M cell target. Vaccine 23(48–49), 5599–5617 (2005). https://doi.org/10.1016/j.vaccine.2005.06.031

    Article  CAS  PubMed  Google Scholar 

  107. Pereira-da-Silva, G., Roque-Barreira, M.C., Van Damme, E.J.: Artin M: A rational substitution for the names artocarpin and KM+. Immunol. Lett. 119(1–2), 114–115 (2008). https://doi.org/10.1016/j.imlet.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  108. Fontenelle, T.P.C., Lima, G.C., Mesquita, J.X., Lopes, J.L.S., de Brito, T.V., Vieira Júnior, F.D.C., Sales, A.B., Aragão, K.S., Souza, M.H.L.P., Barbosa, A.L.D.R., Freitas, A.L.P.: Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. Int. J. Biol. Macromol. 112, 1122–1130 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.058

    Article  CAS  PubMed  Google Scholar 

  109. Bitencourt, F.S., Figueiredo, J.G., Mota, M.R., Bezerra, C.C., Silvestre, P.P., Vale, M.R., Nascimento, K.S., Sampaio, A.H., Nagano, C.S., Saker-Sampaio, S., Farias, W.R., Cavada, B.S., Assreuy, A.M., de Alencar, N.M.: Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 377(2), 139–148 (2008). https://doi.org/10.1007/s00210-008-0262-2

    Article  CAS  Google Scholar 

  110. Abreu, T.M., Ribeiro, N.A., Chaves, H.V., Jorge, R.J., Bezerra, M.M., Monteiro, H.S., Vasconcelos, I.M., Mota, É.F., Benevides, N.M.: Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med. 82(7), 596–605 (2016). https://doi.org/10.1055/s-0042-101762

    Article  CAS  PubMed  Google Scholar 

  111. Araújo, T.S., Teixeira, C.S., Falcão, M.A., Junior, V.R., Santiago, M.Q., Benevides, R.G., Delatorre, P., Martins, J.L., Alexandre-Moreira, M.S., Cavada, B.S., Campesatto, E.A., Rocha, B.A.: Anti-inflammatory and antinociceptive activity of chitin-binding lectin from Canna limbata Seeds. Applied Biochemistry and Biotechnology 171(8), 1944–1955 (2013). https://doi.org/10.1007/s12010-013-0470-1

    Article  CAS  PubMed  Google Scholar 

  112. Silva, H.C., Bari, A.U., Rocha, B.A., Nascimento, K.S., Ponte, E.L., Pires, A.F., Delatorre, P., Teixeira, E.H., Debray, H., Assreuy, A.M., Nagano, C.S., Cavada, B.S.: Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. Journal of Molecular Recognition 26(10), 470–478 (2013). https://doi.org/10.1002/jmr.2289

    Article  CAS  PubMed  Google Scholar 

  113. de Oliveira Leite, G., Santos, S.A.A.R., Bezerra, F.M.D.H., Silva, S.E., F. E., de Castro Ribeiro, A. D., Roma, R. R., Silva, R. R. S., Santos, M. H. C., Santos, A. L. E., Teixeira, C. S., & Campos, A. R.: Is the orofacial antinociceptive effect of lectins intrinsically related to their specificity to monosaccharides? International Journal of Biological Macromolecules. MHC. CS, and AR 161, 1079–1085 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.132

    Article  CAS  Google Scholar 

  114. Araújo, R.M.S., Vaz, A.F.M., Aguiar, J.S., Coelho, L.C.B.B., Paiva, P.M.G., Melo, A.M.M., Silva, T.G., Correia, M.T.S.: Lectin from Crataeva tapia bark exerts antitumor, anti-inflammtory and analgesic activities. Natural Products and Bioprospecting 1(2), 97–100 (2011). https://doi.org/10.1007/s13659-011-0014-8

    Article  CAS  PubMed Central  Google Scholar 

  115. Araújo, R.M., Ferreira, R.S., Napoleão, T.H., Carneiro-da-Cunha, Md., Coelho, L.C., Correia, M.T., Oliva, M.L., Paiva, P.M., Araújo, M.R.MSd., et al.: Crataeva tapia bark lectin is an affinity adsorbent and insecticidal agent. Plant Sci. 183, 20–26 (2012). https://doi.org/10.1016/j.plantsci.2011.10.018

    Article  CAS  PubMed  Google Scholar 

  116. Assreuy, A.M., Shibuya, M.D., Martins, G.J., De Souza, M.L., Cavada, B.S., Moreira, R.A., Oliveira, J.T., Ribeiro, R.A., Flores, C.A.: Anti-inflammatory effect of glucose-mannose binding lectins isolated from Brazilian beans. Mediators Inflamm. 6(3), 201–210 (1997). https://doi.org/10.1080/09629359791695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Moreira, R.A., Barros, A.C., Stewart, J.C., Pusztai, A.: Isolation and characterization of a lectin from the seeds of Dioclea grandiflora (Mart.). Planta 158(1), 63–69 (1983). https://doi.org/10.1007/BF00395404

    Article  CAS  PubMed  Google Scholar 

  118. Márcio, V.R., et al.: Purification and partial characterization of a lectin from Dioclea virgata Benth seeds. Fascículos Revista Brasileira de Fisiologia Vegetal. 8, 37–42 (1996)

    Google Scholar 

  119. Holanda, F.R., Coelho-de-Sousa, A.N., Assreuy, A.M., Leal-Cardoso, J.H., Pires, A.F., do Nascimento, K. S., Teixeira, C. S., Cavada, B. S., & Santos, C. F.: Antinociceptive activity of lectins from Diocleinae seeds on acetic acid-induced writhing test in mice. Protein Pept. Lett. 16(9), 1088–1092 (2009). https://doi.org/10.2174/092986609789055304

    Article  CAS  PubMed  Google Scholar 

  120. Renato, D.A.M., et al.: isolation and partial characterization of a lectin from seeds of Dioclea violacea. Braz. J. Plant. Physiol. 8(1), 23–29 (1996)

    Google Scholar 

  121. Do Nascimento, F.L.F., et al.: The anti-inflammatory effect of Andira Anthelmia lectin in rats involves inhibition of the prostanoid pathway. TNF-α and lectin domain. Research Square. (2021). https://doi.org/10.21203/rs.3.rs-718940/v1

    Article  Google Scholar 

  122. De Freitas Pires, A., Bezerra, M.M., Amorim, R.M.F., do Nascimento, F. L. F., Marinho, M. M., Moura, R. M., Silva, M. T. L., Correia, J. L. A., Cavada, B. S., Assreuy, A. M. S., & Nascimento, K. S.: Lectin purified from Lonchocarpus campestris seeds inhibits inflammatory nociception. Int. J. Biol. Macromol. 125, 53–60 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.233

    Article  CAS  PubMed  Google Scholar 

  123. Oladokun, et al.: Anti-nociceptive and anti-inflammatory activities of Tetracarpidium conophorum seed lectin. Sci. Afr 3, e00073 (2019)

    Google Scholar 

  124. Pratap, J.V., Jeyaprakash, A.A., Rani, P.G., Sekar, K., Surolia, A., Vijayan, M.: Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-Dmannose: Implications to the generation of carbohydrate specificity. J. Mol. Biol. 317(2), 237–247 (2002). https://doi.org/10.1006/jmbi.2001.5432

    Article  CAS  PubMed  Google Scholar 

  125. Young, N.M., Johnston, R.A., Watson, D.C.: The amino acid sequences of jacalin and the Maclura pomifera agglutinin. FEBS Lett. 282(2), 382–384 (1991). https://doi.org/10.1016/0014-5793(91)80518-8

    Article  CAS  PubMed  Google Scholar 

  126. Ngoc, L.D., Brillard, M., Hoebeke, J.: The alpha- and betasubunits of the jacalins are cleavage products from a 17-kDa precursor. Biochem. Biophys. Acta. 1156(2), 219–222 (1993). https://doi.org/10.1016/0304-4165(93)90139-y

    Article  CAS  PubMed  Google Scholar 

  127. Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Lainé, A.C., Gomord, V., Faye, L.: N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Mol. Biol. 38(1–2), 31–48 (1998). https://doi.org/10.1023/A:1006012005654

    Article  CAS  PubMed  Google Scholar 

  128. Nakamura-Tsuruta, S., Uchiyama, N., Peumans, W.J., Van Damme, E.J., Totani, K., Ito, Y., Hirabayashi, J.: Analysis of the sugar-binding specificity of mannose-binding-type Jacalinrelated lectins by frontal affinity chromatography—An approach to functional classification. FEBS J. 275(6), 1227–1239 (2008). https://doi.org/10.1111/j.1742-4658.2008.06282.x

    Article  CAS  PubMed  Google Scholar 

  129. Pranchevicius, M.C., Oliveira, L.L., Rosa, J.C., Avanci, N.C., Quiapim, A.C., Roque-Barreira, M.C., Goldman, M.H.: Characterization and optimization of ArtinM lectin expression in Escherichia coli. BMC Biotechnol. 12, 44 (2012). https://doi.org/10.1186/1472-6750-12-44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Akira, S., Uematsu, S., Takeuchi, O.: Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006). https://doi.org/10.1016/j.cell.2006.02.015

    Article  CAS  PubMed  Google Scholar 

  131. Santos, A.L.E., Leite, G.O., Carneiro, R.F., Roma, R.R., Santos, V.F., Santos, M.H.C., Pereira, R.O., Silva, R.C., Nagano, C.S., Sampaio, A.H., Rocha, B.A.M., Delatorre, P., Campos, A.R., Teixeira, C.S.: Purification and biophysical characterization of a mannose/N-acetyl-dglucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Arch. Biochem. Biophys. 664, 149–156 (2019). https://doi.org/10.1016/j.abb.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  132. Nolte, S., de Castro, D., Damasio, A.C., Baréa, J.G., Magalhães, A., Mello Zischler, L.F.C., Stuelp-Campelo, P.M., Elífio-Esposito, S.L., Roque-Barreira, M.C., Reis, C.A., Moreno-Amaral, Andréa Novais.: BJcuL, a lectin purified from Bothrops jararacussu venom, induces apoptosis in human gastric carcinoma cells accompanied by inhibition of cell adhesion and actin cytoskeleton disassembly. Toxicon 59(1), 81–85 (2012). https://doi.org/10.1016/j.toxicon.2011.10.012. (ISSN 0041-0101)

    Article  CAS  PubMed  Google Scholar 

  133. Teixeira, C.R., Cavassani, K.A., Gomes, R.B., Teixeira, M.J., Roque-Barreira, M.C., Cavada, B.S., da Silva, J.S., Barral, A., Barral-Netto, M.: Potential of KM+lectin in immunization against Leishmania amazonensis infection. Vaccine 24(15), 3001–3008 (2006). https://doi.org/10.1016/j.vaccine.2005.11.067

    Article  CAS  PubMed  Google Scholar 

  134. Trinchieri, G., Wysocka, M., D’Andrea, A., Rengaraju, M., Aste-Amezaga, M., Kubin, M., Valiante, N.M., Chehimi, J.: Natural killer cell stimulatory factor (NKSF) or interleukin-12 is a key regulator of immune response and inflammation. Prog. Growth Factor Res. 4(4), 355–368 (1992). https://doi.org/10.1016/0955-2235(92)90016-b

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received no financial support.

Author information

Authors and Affiliations

Authors

Contributions

All the authors are equally contributed until the completion of final drafting of the manuscript. OSA, RK and BNS helped in searching the review of literature, designing the tables. HJS, MAD and SSS did the concepts designed, drafting and preparation of manuscript.

Corresponding author

Correspondence to Hanjabam Joykishan Sharma.

Ethics declarations

Conflict of interest

For this paper, the authors say they have no competing interests.

Ethical approval

The authors declares that ethical approval was not required for this study or not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, O.S., Singh, S.S., Kamei, R. et al. Glycosylated SARs Cov 2 interaction with plant lectins. Glycoconj J (2024). https://doi.org/10.1007/s10719-024-10154-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10719-024-10154-x

Keywords

Navigation