Skip to main content

Advertisement

Log in

Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations

  • Research
  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The recent dynamics of terrestrial water storage (TWS) and groundwater storage (GWS) fluctuations were investigated based on the Gravity Recovery And Climate Experiment (GRACE) observations over 25 basins of Türkiye. Coarse-resolution GRACE estimates were downscaled based on the Random Forest algorithm. The impacts of precipitation (P) and evapotranspiration (ET) on the variations of water storage were also assessed. The findings demonstrated good performance for the RF model in simulating finer resolution estimates of TWS. The results indicated a diminishing trend of TWS and its hydrologic components over all the basins from 2003 to 2020. The Doğu Akdeniz Basin with the annually decreasing TWS and GWS of \(1.15\ \mathrm{cm}/\mathrm{yr}\) and \(1.10\ \mathrm{cm}/\mathrm{yr}\) was the most critical basin of Türkiye. The least storage loss was observed in the Batı Karadeniz Basin with the annual TWS and GWS loss of \(0.38 \,\mathrm{cm}/\mathrm{yr}\) and \(0.45\,\mathrm{ cm}/\mathrm{yr}\), respectively. Based on the results, Türkiye has lost, on average, an estimated \(5.16\ \mathrm{km}^{3}/\mathrm{yr}\) and \(4.09\, {\mathrm{km}}^{3}/\mathrm{yr}\) of its TWS and GWS, respectively, which are equivalent to the total storage loss of \(92.88\, {\mathrm{km}}^{3}\) and \(73.62\, {\mathrm{km}}^{3}\) of TWS and GWS during the last 18 years. The results also indicated that P and ET interact differently with the variations of TWS and GWS. The net water flux was revealed to be partially correlated with the total water storage fluctuations, suggesting the governing role of other deriving forces particularly the anthropogenic factors in the spatiotemporal variations of Türkiye’s water storage; therefore, a sector-specific analysis of the water storage variations is crucial for the country, particularly by concentrating more on the dynamics of GWS.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data and codes that support the findings of this study are available upon a rational request from the corresponding author.

References

  • Ali, S., Liu, D., Fu, Q., Cheema, M. J. M., Pham, Q. B., Rahaman, M., et al. (2021). Improving the resolution of GRACE data for spatio-temporal groundwater storage assessment. Remote Sensing, 13(17), 3513. https://doi.org/10.3390/rs13173513

    Article  Google Scholar 

  • Ali, S., Khorrami, B., Jehanzaib, M., Arshad, A., Ajmal, M., Shafeeque, M., Dilawar, A., Basit, I., Zhang, L. L., Tariq, M. A. U., & Niaz, M. A. (2023). Spatial downscaling of GRACE data for improved hydrological droughts in the Indus Basin Irrigation System (IBIS). Remote Sens, 15(4), 873. https://doi.org/10.3390/rs15040873

    Article  Google Scholar 

  • Apaydin, A. (2011). Groundwater legislation in Turkey: Problems of conception and application. Water Int., 36(3), 314–327. https://doi.org/10.1080/02508060.2011.586750

    Article  Google Scholar 

  • Arshad, A., Mirchi, A., Samimi, M., & Ahmad, B. (2022). Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the irrigated Indus basin. Science of the Total Environment, p.156044. https://doi.org/10.1016/j.scitotenv.2022.156044

  • Bayer Altin, T., & Altin, B. N. (2021). Response of hydrological drought to meteorological drought in the eastern Mediterranean Basin of Turkey. Journal of Arid Land, 13(5), 470–486. https://doi.org/10.1007/s40333-021-0064-7

    Article  Google Scholar 

  • Byrne, M. P., & O’Gorman, P. A. (2015). The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. Journal of Climate, 28(20), 8078–8092. https://doi.org/10.1175/JCLI-D-15-0369.1

    Article  Google Scholar 

  • Caló, F., Notti, D., Galve, J. P., Abdikan, S., Görüm, T., Pepe, A., et al. (2017). Dinsar-Based detection of land subsidence and correlation with groundwater depletion in Konya Plain. Turkey. Remote Sensing, 9(1), 83. https://doi.org/10.3390/rs9010083

    Article  Google Scholar 

  • Chen, L., He, Q., Liu, K., Li, J., & Jing, C. (2019). Downscaling of grace-derived groundwater storage based on the random forest model. Remote Sensing, 11(24), 1–19. https://doi.org/10.3390/rs11242979

    Article  Google Scholar 

  • Dikici, M. (2020). Drought analysis with different indices for the Asi Basin (Turkey). Scientific Reports, 10(1), 20739. https://doi.org/10.1038/s41598-020-77827-z

    Article  CAS  Google Scholar 

  • Dong, Y., Jiang, C., Suri, M. R., Pee, D., Meng, L., & Goldstein, R. E. R. (2019). Groundwater level changes with a focus on agricultural areas in the Mid-Atlantic region of the United States, 2002–2016. Environmental Research, 171, 193–203. https://doi.org/10.1016/j.envres.2019.01.004

    Article  CAS  Google Scholar 

  • Famiglietti, J. S. (2004). Remote sensing of terrestrial water storage, soil moisture and surface waters. Washington DC Geophysical Union Geophysical Monograph Series, 150, 197–207. https://doi.org/10.1029/150GM16

    Article  Google Scholar 

  • Frappart, F., & Ramillien, G. (2018). Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment [GRACE] satellite mission: A review. Remote Sensing, 10(6), 829. https://doi.org/10.3390/rs10060829

    Article  Google Scholar 

  • Gao, X., & Giorgi, F. (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 62(3–4), 195–209. https://doi.org/10.1016/j.gloplacha.2008.02.002

    Article  Google Scholar 

  • Harmancioglu, N. B., & Altinbilek, D. (Eds.). (2020). Water resources of Turkey . Springer International Publishing. ISBN-10 : 3030117286.

  • Huang, Z., Yeh, P. J. F., Pan, Y., Jiao, J. J., Gong, H., Li, X., & Zheng, L. (2019). Detection of large-scale groundwater storage variability over the karstic regions in Southwest China. Journal of Hydrology, 569, 409–422. https://doi.org/10.1016/j.jhydrol.2018.11.071

  • Humphrey, V., Rodell, M., & Eicker, A. (2023). Using satellite-based terrestrial water storage data: A review. Surveys in Geophysics. https://doi.org/10.1007/s10712-022-09754-9

    Article  Google Scholar 

  • Kahraman, O. & Akin, B. S. (2019). Doğu Akdeniz Havzasında Sıcaklık, Yağış ve Aerosol Değişiminin İncelenmesi. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 244–253. https://doi.org/10.21923/jesd.464737

  • Khorrami, B., & Gunduz, O. (2021a). Evaluation of the temporal variations of groundwater storage and its interactions with climatic variables using GRACE data and hydrological models: A study from Turkey. Hydrological Processes, 35(3), e14076. https://doi.org/10.1002/hyp.14076

  • Khorrami, B., & Gunduz, O. (2021b). An enhanced water storage deficit index (EWSDI) for drought detection using GRACE gravity estimates. Journal of Hydrology, 603, 126812. https://doi.org/10.1016/j.jhydrol.2021.126812

  • Khorrami, B., & Gündüz, O. (2022). Detection and analysis of drought over Turkey with remote sensing and model-based drought indices. Geocarto International, 37(26), 12171-12193. https://doi.org/10.1080/10106049.2022.2066197

  • Khorrami, B., Ali, S., & Gündüz, O. (2023a). Investigating the local-scale fluctuations of groundwater storage by using downscaled GRACE/GRACE-FO JPL mascon product Based on Machine Learning (ML) Algorithm. Water Resources Management. https://doi.org/10.1007/s11269-023-03509-w

    Article  Google Scholar 

  • Khorrami, B., Ali, S., Sahin, O. G., & Gunduz, O. (2023b). Model‐coupled GRACE‐based analysis of hydrological dynamics of drying Lake Urmia and its basin. Hydrological Processes, e14893.

  • Khorrami, B., Gorjifard, S., Ali, S. et al. (2023c). Local-scale monitoring of evapotranspiration based on downscaled GRACE observations and remotely sensed data. An application of terrestrial water balance approach. Earth Science Informatics, 16, 1329–1345. https://doi.org/10.1007/s12145-023-00964-2

  • Khorrami, B., Ali, S., Abadi, L.H. et al. (2022a). Spatio-temporal variations in characteristics of terrestrial water storage and associated drought over different geographic regions of Türkiye. Earth Science Informatics (2022a). https://doi.org/10.1007/s12145-022-00907-3

  • Khorrami, B., Arik, F., & Gunduz, O. (2021). Land deformation and sinkhole occurrence in response to the fluctuations of groundwater storage: An integrated assessment of GRACE gravity measurements, ICESat/ICESat-2 altimetry data and hydrologic models. Giscience & Remote Sensing, 58(8), 1518–1542. https://doi.org/10.1080/15481603.2021.2000349

    Article  Google Scholar 

  • Khorrami, B., Fistikoglu, O., & Gunduz, O. (2022b). A systematic assessment of flooding potential in a semi-arid Basin using GRACE gravity estimates and large-scale hydrological modeling. Geocarto International, 37:26, 11030-11051. https://doi.org/10.1080/10106049.2022.2045365

  • Kumar, K. S., AnandRaj, P., Sreelatha, K., Bisht, D. S., & Sridhar, V. (2021a). Monthly and seasonal drought characterization using grace-based groundwater drought index and its link to teleconnections across south indian river basins. Climate, 9(4), 56. https://doi.org/10.3390/cli9040056

    Article  Google Scholar 

  • Kumar, K. S., Rathnam, E. V., & Sridhar, V. (2021b). Tracking seasonal and monthly drought with GRACE-based terrestrial water storage assessments over major river basins in South India. Science of the Total Environment, 763, 142994. https://doi.org/10.1016/j.scitotenv.2020.142994

  • Kuzucuoğlu, C. (2019). The physical geography of Türkiye: An outline. In: Kuzucuoğlu C., Çiner A., Kazancı N. (eds) Landscapes and landforms of Türkiye. World Geomorphological Landscapes.. Springer, Cham. https://doi.org/10.1007/978-3-030-03515-0_2

  • Lenk, O. (2013). Satellite based estimates of terrestrial water storage variations in Turkey. Journal of Geodynamics, 67, 106–110. https://doi.org/10.1016/j.jog.2012.04.010

    Article  Google Scholar 

  • Loeser, C., Rui, H., Teng, W. L., Ostrenga, D. M., Wei, J. C., Mcnally, A. L., & Meyer, D. J. (2020). Famine early warning systems network (FEWS NET) land data assimilation system (LDAS) and other assimilated hydrological data at NASA GES DISC. In 100 th American Meteorological Society Annual Meeting, 34 th Conference on Hydrology (No. GSFC-E-DAA-TN77212).

  • Long, D., Longuevergne, L., & Scanlon, B. R. (2015). Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 51(4), 2574–2594. https://doi.org/10.1002/2014WR016853

    Article  Google Scholar 

  • McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S. et al. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4, 170012. https://doi.org/10.1038/sdata.2017.12

  • Milewski, A. M., Thomas, M. B., Seyoum, W. M., & Rasmussen, T. C. (2019). Spatial downscaling of GRACE TWSA data to identify spatiotemporal groundwater level trends in the Upper Floridan Aquifer, Georgia, USA. Remote Sensing, 11(23), 2756. https://doi.org/10.3390/rs11232756

    Article  Google Scholar 

  • Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree and random forest machine learning models in Iran. Environmental Monitoring and Assessment, 188(1), 1–27. https://doi.org/10.1007/s10661-015-5049-6

    Article  Google Scholar 

  • Neves, M. C., Nunes, L. M., & Monteiro, J. P. (2020). Evaluation of GRACE data for water resource management in Iberia: A case study of groundwater storage monitoring in the Algarve region. Journal of Hydrology: Regional Studies, 32, 100734. https://doi.org/10.1016/j.ejrh.2020.100734

  • Okay Ahi, G., & Jin, S. (2019). Hydrologic mass changes and their implications in Mediterranean-climate Turkey from GRACE measurements. Remote Sensing, 11(2), 120. https://doi.org/10.3390/rs11020120

    Article  Google Scholar 

  • Paca, V. H. D. M., Espinoza-Dávalos, G. E., Moreira, D. M., & Comair, G. (2020). Variability of trends in precipitation across the Amazon River basin determined from the CHIRPS precipitation product and from station records. Water, 12(5), 1244. https://doi.org/10.3390/w12051244

    Article  Google Scholar 

  • Pan, Y., Zhang, C., Gong, H., Yeh, P. J. F., Shen, Y., Guo, Y., & Li, X. (2017). Detection of human‐induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophysical Research Letters, 44(1), 190–199. https://doi.org/10.1002/2016GL071287

  • Pilevneli, T., Capar, G., & Sánchez-Cerdà, C. (2023). Investigation of climate change impacts on agricultural production in Turkey using volumetric water footprint approach. Sustainable Production and Consumption, 35, 605–623. https://doi.org/10.1016/j.spc.2022.12.013

    Article  Google Scholar 

  • Rahaman, M. M., Thakur, B., Kalra, A., Li, R., & Maheshwari, P. (2019). Estimating high-resolution groundwater storage from GRACE: A random forest approach. Environments, 6(6), 63. https://doi.org/10.3390/environments6060063

    Article  Google Scholar 

  • Rateb, A., Scanlon, B. R., Pool, D. R., Sun, A., Zhang, Z., Chen, J., & Zell, W. (2020). Comparison of groundwater storage changes from GRACE satellites with monitoring and modeling of major US aquifers. Water Resources Research, 56(12), e2020WR027556. https://doi.org/10.1029/2020WR027556

  • Ray, R. L., Sishodia, R. P., & Tefera, G. W. (2022). Evaluation of gridded precipitation data for hydrologic modeling in North-Central Texas. Remote Sensing, 14(16), 3860. https://doi.org/10.3390/rs14163860

    Article  Google Scholar 

  • Rodell, M., Chen, J., Kato, H., Famiglietti, J. S., Nigro, J., & Wilson, C. R. (2007). Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeology Journal, 15(1), 159–166. https://doi.org/10.1007/s10040-006-0103-7

    Article  CAS  Google Scholar 

  • Save, H., Bettadpur, S., & Tapley, B. D. (2016). High-resolution CSR GRACE RL05 mascons. Journal of Geophysical Research: Solid Earth, 121(10), 7547–7569. https://doi.org/10.1002/2016JB013007

    Article  Google Scholar 

  • Seager, R., Naik, N., & Vecchi, G. A. (2010). Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. Journal of Climate, 23(17), 4651–4668. https://doi.org/10.1175/2010JCLI3655.1

    Article  Google Scholar 

  • Sensoy, S., Demircan, M., Ulupınar, U., & Balta, I. (2008). Türkiye _Iklimi. MGM web sitesi. http://www.mgm.gov.tr/FILES/iklim/turkiye_iklimi.pdf. (Original in Turkish).

  • Souza, V. D. A., Roberti, D. R., Ruhoff, A. L., Zimmer, T., Adamatti, D. S., Gonçalves, L. G. G. D., & Moraes, O. L. D. (2019). Evaluation of MOD16 algorithm over irrigated rice paddy using flux tower measurements in Southern Brazil. Water, 11(9), 1911. https://doi.org/10.3390/w11091911

  • Uslu, O. (2020). Water Quality. In: Harmancioglu, N., Altinbilek, D. (eds) Water resources of Turkey. World Water Resources, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-11729-0_7

  • Vallee, D., Margat, J., Eliasson, A., & Hoogeveen, J. (2003). Review of world water resources by country. Food and Agricultural Organization of the United Nations. Retrieved from December 30, 2021, from: https://www.fao.org/3/Y4473E/y4473e.pdf

  • Wang, L., Kaban, M. K., Thomas, M., Chen, C., & Ma, X. (2019). The challenge of spatial resolutions for GRACE-based estimates volume changes of larger man-made lake: The case of China’s Three Gorges reservoir in the Yangtze river. Remote Sensing, 11(1), 99. https://doi.org/10.3390/rs11010099

    Article  CAS  Google Scholar 

  • Watkins, M. M., Wiese, D. N., Yuan, D. N., Boening, C., & Landerer, F. W. (2015). Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. Journal of Geophysical Research-Solid Earth, 120(4), 2648–2671. https://doi.org/10.1002/2014jb011547

    Article  Google Scholar 

  • Yıldırım, Y. Ö. (2015). GRACE uydu verileri ile Türkiye’nin uzun dönemli su kütle değişiminin incelenmesi [Doktora Tezi]. Gebze Teknik University (Original in Turkish).

  • Yilmaz, K. K., & Yazicigil, H. (2011). Potential impacts of climate change on Turkish water resources: A review. Climate Change and its Effects on Water Resources: Issues of National and Global Security, 105–114.

  • Yılmaz, M. T., Karasu, İ., Yılmaz, K. K., Tüfekçi Avşar, N., Selek, B., Aras, M., & Kirmencioğlu, B. (2018). Analysis of terrestrial water storage change using grace-based observations over Dicle-Fırat Basin. Türkiye Ulusal Jeodezi Jeofizik Birliği Bilimsel Kongresi, Izmir. 30 May-2 June 2018.

  • Yılmaz, M., & Tosunoğlu, F. (2023). Assessing the main drivers of low flow series in Turkey. Natural Hazards, 115(3), 1927–1953. https://doi.org/10.1007/s11069-022-05621-3

    Article  Google Scholar 

  • Yin, W., Zhang, G., Liu, F., Zhang, D., Zhang, X., & Chen, S. (2022). Improving the spatial resolution of GRACE-based groundwater storage estimates using a machine learning algorithm and hydrological model. Hydrogeology Journal, 30(3), 947–963. https://doi.org/10.1007/s10040-021-02447-4

    Article  Google Scholar 

  • Zhang, Y., He, B. I. N., Guo, L., & Liu, D. (2019a). Differences in response of terrestrial water storage components to precipitation over 168 global river basins. Journal of Hydrometeorology, 20(9), 1981–1999. https://doi.org/10.1175/JHM-D-18-0253.1

    Article  Google Scholar 

  • Zhang, Y., He, B., Guo, L., Liu, J., & Xie, X. (2019b). The relative contributions of precipitation, evapotranspiration, and runoff to terrestrial water storage changes across 168 river basins. Journal of Hydrology, 579, 124194. https://doi.org/10.1016/j.jhydrol.2019.124194

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Behnam Khorrami and Orhan Gündüz. Methodology: Behnam Khorrami. Data Curation: Behnam Khorrami. Formal analysis: Behnam Khorrami. Writing: Behnam Khorrami. Editing: Behnam Khorrami and Orhan Gündüz.

Corresponding author

Correspondence to Behnam Khorrami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An alarming water storage depletion was detected in Türkiye over 2003–2020 period.

• Türkiye’s total and groundwater storage has been depleted by 5.16 km3/yr and 4.09 km3/yr, respectively.

• Snow water equivalent (SWE) appears to have a minor impact on the variations of water storage in Türkiye.

• The water storage variations in Türkiye can be ascribed to both natural and anthropogenic factors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 899 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorrami, B., Gündüz, O. Remote sensing-based monitoring and evaluation of the basin-wise dynamics of terrestrial water and groundwater storage fluctuations. Environ Monit Assess 195, 868 (2023). https://doi.org/10.1007/s10661-023-11480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-023-11480-7

Keywords

Navigation