Skip to main content

Advertisement

Log in

Scenario modeling to predict changes in land use/cover using Land Change Modeler and InVEST model: a case study of Karaj Metropolis, Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Models for land cover/land use simulation are appropriate and important tools for decision-makers, helping them build future plausible landscape scenarios. Due to the fact that the simulation results of different models may be different, it is sometimes difficult for users to choose a suitable model. Therefore, in this study, an integrated approach is used, combining the data obtained from remote sensing and GIS with Land Change Modeler (LCM) and Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) models to simulate and predict land cover/land use changes for 2028 in Karaj metropolis (Northern Iran as a poor region—in terms of data—which is under intense and rapid urbanization. In this sense, three land cover/land use maps related to the study area were primarily generated using satellite image data for the period 2006, 2011, and 2017. They were used as a basis to define two scenarios: business-as-usual (BAU) scenario and participatory plausible scenario (PPS) for 2028. Afterwards, the necessary input data used in running of both models were prepared and, then, the outputs of the models were interpreted and compared. According to the results, while human-made coverage and low-density grasslands increased by about 74% and 12%, respectively, it was from 2006 to 2017 that agricultural lands, gardens, and high-density grasslands decreased by 42%, 34%, and 7%, respectively. According to the business-as-usual scenario, which was projected using the LCM model, the increase in human-made cover will continue by about 29% by 2028, and the reduction rate of agricultural lands, gardens, and low-dense and dense grasslands will experience decrease by about 20%, 3%, 11%, and 9%, respectively. The participatory plausible scenario for 2028, which was defined using the InVEST model, confirmed the same results, but having different quantities. Accordingly, while human-made cover will increase by about 73%, the reduction rate of agricultural lands, gardens, and low-dense and dense grasslands will decrease by about 41%, 10%, 16%, and 1%, respectively. The output quantities of InVEST scenario model seem to be closer to reality with less uncertainty, because this model estimates the quantity of demand for land and its suitability for different uses, based on the views of different stakeholders, and considers landscape development future policies and plans. In contrast, the LCM model is based solely on trend extrapolation from the past to current time and changes in the landscape structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Adnan, M. S., Abdullah, A. Y., Dewan, A., & Hall, J. (2020). The effects of changing land use and flood hazard on poverty in coastal Bangladesh. Land Use Policy, 99, 104868. https://doi.org/10.1016/j.landusepol.2020.104868

    Article  Google Scholar 

  • Aksoy, T., Dabanli, A., Cetin, M., Senyel Kurkcuoglu M. A., Cengiz, A. E., Cabuk, S. N., & Cabuk, A. (2022). Evaluation of comparing urban area land use change with Urban Atlas and CORINE data. Environmental Science and Pollution Research, 1–21. https://doi.org/10.1007/s11356-021-17766-y

  • Al Kafy, A., Rahman, M., Al-Faisal, A., Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18, 100314. https://doi.org/10.1016/j.rsase.2020.100314

    Article  Google Scholar 

  • Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on Land Change Modeler and attribution of changes in the water balance of Ganga basin to land use change using the SWAT model. Science of the Total Environment, 644, 503–519.

    Article  CAS  Google Scholar 

  • Areendran, G., Raj, K., Mazumdar, S., & Sharma, A. (2017). Land use and land cover change analysis for Kosi River wildlife corridor in Terai Arc Landscape of Northern India: Implications for future management. Tropical Ecology, 58(1), 139–149.

    Google Scholar 

  • Armenteras, D., Murcia, U., Gonzalez, T. M., Baron, O. J., & Arias, J. E. (2019). Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecology and Conservation, 17, e00567. https://doi.org/10.1016/j.gecco.2019.e00567

    Article  Google Scholar 

  • Ayele, G., Hayicho, H., & Alemu, M. (2019). Land use land cover change detection and deforestation modeling: in Delomena District of Bale zone, Ethiopia. Journal of Environmental Protection, 10(4), 532–561. https://doi.org/10.4236/jep.2019.104031

  • Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2020). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve India. Journal of Cleaner Production, 278, 123333.

  • Bai, Y., Zhuang, Z., Ouyang, Z., Zheng, H., & Jiang, B. (2011). Spatial characteristics between biodiversity and ecosystem services in a human-dominated watershed. Ecological Complexity, 8, 177–183. https://doi.org/10.1016/j.ecocom.2011.01.007

    Article  Google Scholar 

  • Chaudhuri, G., & Clarke, C. (2019). Modeling an Indian megalopolis–A case study on adapting SLEUTH urban growth model. Computers, Environment and Urban Systems, 77, 101358. https://doi.org/10.1016/j.compenvurbsys.2019.101358

  • Clarke, K., & Johnson, M. (2020). Calibrating SLEUTH with big data: Projecting California’s land use to 2100. Computers, Environment and Urban Systems, 83, 101525. https://doi.org/10.1016/j.compenvurbsys.2020.101525

  • Das, S., & Angadi, D. (2020). Land use-land cover (LULC) transformation and its relation with land surface temperature changes: A case study of Barrackpore Subdivision, West Bengal, India. Remote Sensing Applications: Society and Environment, 19, 100322. https://doi.org/10.1016/j.rsase.2020.100322

    Article  Google Scholar 

  • Desta, H., & Fetene, A. (2020). Land-use and land-cover change in Lake Ziway watershed of the Ethiopian Central Rift Valley Region and its environmental impacts. Land Use Policy, 96, 104682. https://doi.org/10.1016/j.landusepol.2020.104682

    Article  Google Scholar 

  • Eastman, J. R. (2009). IDRISI Andes. Clark Labs, Clark University, Worcester, MA.

    Google Scholar 

  • Eslamlou, M. S., & Mirmoghtadaee, M. (2017). Evaluation of urban resiliency in physico-structural dimension of Karaj metropolis. Space Ontology International Journal, 6, 37–46.

    Google Scholar 

  • Fadaei, E., Mirsanjari, M. M., & Amiri, M. J. (2020). Modeling of ecosystem services based on land cover change and land use using InVEST software in Jahannama Conservation Area (case: Carbon sequestration ecosystem service). Town and Country Planning, 12(1), 153–173.

    Google Scholar 

  • Ghobadi, A., Khosravi, M., & Tavousi, T. (2018). Surveying of heat waves impact on the urban heat islands: Case study, the Karaj City in Iran. Urban Climate, 24, 600–615. https://doi.org/10.1016/j.uclim.2017.12.004

    Article  Google Scholar 

  • González-García, A., Palomo, I., González, J. A., López, C. A., & Montes, C. (2020). Quantifying spatial supply-demand mismatches in ecosystem services provides insights for land-use planning. Land Use Policy, 94, 104493.

    Article  Google Scholar 

  • Guerry, A. D., Ruckelshaus, M. H., Arkema, K. K., Bernhardt, J. R., Guannel, G., Kim, C. K., Marsik, M., Papenfus, M., Toft, J. E., Verutes, G., Wood, S. A., Beck, M., Chan, F., Chan, K. M. A., Gelfenbaum, G., Gold, B. D., Halpern, B. S., Labiosa, W. B., Lester, S. E., … Spencer, J. (2012). Modeling benefits from nature: Using ecosystem services to inform coastal and marine spatial planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 8, 107–121. https://doi.org/10.1080/21513732.2011.647835

    Article  Google Scholar 

  • Gupta, R., & Sharma, L. (2020). Efficacy of spatial land change modeler as a forecasting indicator for anthropogenic change dynamics over five decades: A case study of Shoolpaneshwar Wildlife Sanctuary, Gujarat. India. Ecological Indicators, 112, 106171. https://doi.org/10.1016/j.ecolind.2020.106171

    Article  Google Scholar 

  • Heydari, S. H., & Mountrakis, G. (2019). Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal classification to support vector machines. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 192–210. https://doi.org/10.1016/j.isprsjprs.2019.04.016

    Article  Google Scholar 

  • Homer, C., Dewitz, J., Jin, S., Xian, G., Costello, C., Danielson, P., Gass, L., Funk, M., Wickham, J., Stehman, S., Auch, R., & Riitters, K. (2020). Conterminous United States land cover change patterns 2001–2016 from the 2016 National Land Cover Database. ISPRS Journal of Photogrammetry and Remote Sensing, 162, 184–199. https://doi.org/10.1016/j.isprsjprs.2020.02.019

    Article  Google Scholar 

  • Islam, K., Rahman, F., & Jashimuddin, M. (2018). Modeling land use change using cellular automata and artificial neural network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecological Indicators, 88, 439–453. https://doi.org/10.1016/j.ecolind.2018.01.047

  • Jiang, W. G., Deng, Y., Tang, Z. H., Lei, X., & Chen, Z. (2017). Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecological Modelling, 345, 30–40. https://doi.org/10.1016/j.ecolmodel.2016.12.002

    Article  Google Scholar 

  • Karimi, F., Sultana, S., Shirzadi Babakan, A., & Suthaharan, Sh. (2019). An enhanced support vector machine model for urban expansion prediction. Computers, Environment and Urban Systems, 75, 61–75. https://doi.org/10.1016/j.compenvurbsys.2019.01.001

  • Karimi Firozjaei, M., Sedighi, A., Argany, M., Jelokhani-Niaraki, M., & Jokar Arsanjani, J. (2019). A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities, 93, 120–135. https://doi.org/10.1016/j.cities.2019.05.001

    Article  Google Scholar 

  • Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028

    Article  Google Scholar 

  • Kindu, M., Schneider, T., Döllerer, M., Teketay, D., & Knoke, T. (2018). Scenario modelling of land use/land cover changes in Munessa-Shashemene landscape of the Ethiopian highlands. Science of the Total Environment, 622, 534–546. https://doi.org/10.1016/j.scitotenv.2017.11.338

    Article  CAS  Google Scholar 

  • Levrel, H., Cabral, P., Feger, C., Chambolle, M., & Basque, D. (2017). How to overcome the implementation gap in ecosystem services? A user-friendly and inclusive tool for improved urban management. Land Use Policy, 68, 574–584. https://doi.org/10.1016/j.landusepol.2017.07.037

    Article  Google Scholar 

  • Li, B., Chen, D., Wu, S., Zhou, S., Wang, T., & Chen, H. (2016). Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China. Ecological Indicators, 71, 416–427.

    Article  Google Scholar 

  • Liu, J., Zhang, G., Zhuang, Z., Cheng, Q., Gao, Y., Chen, T., Huang, Q., Xu, L., & Chen, D. (2017). A new perspective for urban development boundary delineation based on SLEUTH-InVEST model. Habitat International, 70, 13–23. https://doi.org/10.1016/j.habitatint.2017.09.009Get

    Article  Google Scholar 

  • Liu, X., Zhu, X., Zhang, Q., Yang, T., Pan, Y., & Sun, P. (2020). A remote sensing and artificial neural network-based integrated agricultural drought index: Index development and applications. CATENA, 186, 104394. https://doi.org/10.1016/j.catena.2019.104394

    Article  Google Scholar 

  • Mansour, Sh., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques. Land Use Policy, 91, 104414. https://doi.org/10.1016/j.landusepol.2019.104414

    Article  Google Scholar 

  • Mohamed, A., & Worku, H. (2020). Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate, 31, 100545.

    Article  Google Scholar 

  • Mohammadyari, F., Mirsanjari, M. M., Suziedelyte Visockiene, J., & Zarandian, A. (2020). Evaluation of change in land-usage and land-cover in Iran, Karaj City. 11th International Conference “Environmental Engineering,” Vilnius Gediminas Technical University, Lithuania, 21–22 May 2020.

  • Mohammadyari, F., Mirsanjari, M. M., & Zarandian, A. (2021b). The evaluation and modeling of the impacts of urban development on landscape patterns in Karaj metropolis. Town & Country Planning (2008–7047), 13(1).

  • Mohammadyari, F., Pourkhabbaz, H., Tavakoli, M., & Aghdar, H. (2021a). Integration of neural network, Markov chain and CA Markov models to simulate land use change region of Behbahan. Journal of Research and Rural Planning, 10(3), 81–95.

    Google Scholar 

  • Munthali, M. G., Mustak, S., Adeola, A., Botai, J., Singh, S. K., & Davis, N. (2020). Modelling land use and land cover dynamics of Dedza District of Malawi using hybrid cellular automata and Markov model. Remote Sensing Applications: Society and Environment, 17, 100276. https://doi.org/10.1016/j.rsase.2019.100276

    Article  Google Scholar 

  • Nie, X., Lu, B., Chen, Z., Yang, Y., Chen, S., Chen, Z., & Wang, H. (2020). Increase or decrease? Integrating the CLUMondo and InVEST models to assess the impact of the implementation of the major function oriented zone planning on carbon storage. Ecological Indicators, 118, 106708.

    Article  CAS  Google Scholar 

  • Nurwanda, A., & Honjo, T. (2020). The prediction of city expansion and land surface temperature in Bogor City. Indonesia. Sustainable Cities and Society, 52, 101772.

    Article  Google Scholar 

  • Pontius, R. G., Jr. (2000). Quantification error versus location error in the comparison of categorical maps. Photogrammetry and Remote Sensing, 88(8), 1011–1016. http://worldcat.org/issn/00991112

  • Pontius, R. G., Jr. (2002). Statistical methods to partition effects of quantity and location during comparison of categorical maps at multiple resolutions. Photogrammetry and Remote Sensing, 68(10), 1041–1049.

    Google Scholar 

  • Pontius, R. G., Jr., Thontteh, O., & Chen, H. (2008). Components of information for multiple resolution comparison between maps that share a real variable. Environmental and Ecological Statistics, 15, 42–111. https://doi.org/10.1007/s10651-007-0043-y

  • Pourkhabbaz, H. R., Mohammadyari, F., Aghdar, H., & Tavakoly, M. (2015). Planning approach to land use change modeling using satellite images several times Behbahan City. Town and Country Planning, 7(2), 187–207.

    CAS  Google Scholar 

  • Program and Budget Organization of Iran. (2022). Statistics and information office. https://dotic.ir/cat/145.inPersian

  • Rana, V. K., & Suryanarayana, T. M. V. (2020). Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands. Remote Sensing Applications: Society and Environment, 19, 100351. https://doi.org/10.1016/j.rsase.2020.100351

    Article  Google Scholar 

  • Reddy, C. S., Singh, S., Dadhwal, V. K., Jha, C. S., Rao, N. R., & Diwakar, P. G. (2017). Predictive modelling of the spatial pattern of past and future forest cover changes in India. Journal of Earth System Science, 126(8), 1–16. https://doi.org/10.1007/s12040-016-0786-7

    Article  CAS  Google Scholar 

  • Rizvi, S. H., Fatima, H., Iqbal, M. J., & Alam, K. (2020). The effect of urbanization on the intensification of SUHIs: Analysis by LULC on Karachi. Journal of Atmospheric and Solar-Terrestrial Physics, 207, 105374. https://doi.org/10.1016/j.jastp.2020.105374

    Article  Google Scholar 

  • Romano, G., Abdelwahab, O., & Gentile, F. (2018). Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena, 163, 342–353. https://doi.org/10.1016/j.catena.2017.12.039

  • Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology., 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Sarparast, M., Ownegh, M., & Sepehr, A. (2020). Investigation the driving forces of land-use change in northeastern Iran: Causes and effects. Remote Sensing Applications: Society and Environment, 19, 100348. https://doi.org/10.1016/j.rsase.2020.100348

    Article  Google Scholar 

  • Sharp, R., Tallis, HT., Ricketts, T., Guerry, AD., Wood, S.A., Chaplin-Kramer, R., Nelson, E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G., Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy, C., Verutes, G., Kim, CK., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt, J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L., Hamel, P., Vogl, AL., Rogers, L., & Bierbower, W. (2015). InVEST +VERSION+ user’s guide. The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy, and World Wildlife Fund.

  • Siddiqui, A., Siddiqui, A., Maithani, S., Jha, A. K., Kumar, P., & Srivastav, S. K. (2018). Urban growth dynamics of an Indian metropolitan using CA Markov and logistic regression. The Egyptian Journal of Remote Sensing and Space Sciences, 21, 229–236. https://doi.org/10.1016/j.ejrs.2017.11.006

    Article  Google Scholar 

  • Silva, L. P., Xavier, A., Silva, R. M., & Santos, G. (2020). Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecology and Conservation, 21, e00811. https://doi.org/10.1016/j.gecco.2019-00811

    Article  Google Scholar 

  • Sun, X., Crittenden, JC., Li, F., Lu, Z., & Dou, X. (2018). Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta metropolitan area, USA. Science of the Total Environment, 622–623, 974–987. https://doi.org/10.1016/j.scitotenv.2017.12.062

  • Waiyasusri, K., Yumuang, S., & Chotpantarat, S. (2016). Monitoring and predicting land use changes in the Huai Thap Salao Watershed area, Uthaithani Province, Thailand, using the CLUE-s model. Environmental Earth Sciences, 75, 1–16. https://doi.org/10.1007/s12665-016-5322-1

  • Xu, T., Gao, J., & Coco, G. (2019). Simulation of urban expansion via integrating artificial neural network with Markov chain–cellular automata. International Journal of Geographical Information Science, 33(10), 1960–1983. https://doi.org/10.1080/13658816.2019.1600701

    Article  Google Scholar 

  • Yan, Y., Guan, Q., Wang, M., Su, X., Wu, G., Chiang, P., & Cao, W. (2018). Assessment of nitrogen reduction by constructed wetland based on InVEST: A case study of the Jiulong River Watershed, China. Marine Pollution Bulletin, 133, 349–356. https://doi.org/10.1016/j.marpolbul.2018.05.050

    Article  CAS  Google Scholar 

  • You, W., Ji, Z., Wu, L., Deng, X., Huang, D., Chen, B., & He, D. (2017). Modeling changes in land use patterns and ecosystem services to explore a potential solution for meeting the management needs of a heritage site at the landscape level. Ecological Indicators, 73, 68–78.

    Article  Google Scholar 

  • Zarandian, A., Baral, H., Stork, N. E., Ling, M. A., Yavari, A. R., Jafari, H. R., & Amirnejad, H. (2017). Modeling of ecosystem services informs spatial planning in lands adjacent to the Sarvelat and Javaherdasht protected area in Northern Iran. Land Use Policy, 61, 487–500.

    Article  Google Scholar 

  • Zhang, D., Huang, Q., He, C., & Wu, J. (2017). Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the shared socioeconomic pathways. Resources, Conservation and Recycling, 125, 115–130.

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this article would like to thank the Research Center for Environment and Sustainable Development (RCESD), Department of Environmental Sciences, Malayer University, and the Department of Geodesy and Cadaster, Vilnius Gediminas Technical University, for their supports.

Author information

Authors and Affiliations

Authors

Contributions

A.Z. and F.M.: conception and design, data collection, methodology, modeling and mapping, validation, and writing and preparation of original draft; A.Z.: formal analysis and resources; M.M.M. and J.S.V.: methodology, validation, and writing and preparation of original draft. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ardavan Zarandian.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarandian, A., Mohammadyari, F., Mirsanjari, M.M. et al. Scenario modeling to predict changes in land use/cover using Land Change Modeler and InVEST model: a case study of Karaj Metropolis, Iran. Environ Monit Assess 195, 273 (2023). https://doi.org/10.1007/s10661-022-10740-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-10740-2

Keywords

Navigation