Skip to main content

Advertisement

Log in

Complete genomic characterization and evolutionary analysis of CMV isolate associated with Ocimum gratissimum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cucumber mosaic virus (CMV) is among the most devastating plant viruses, which infects more than 1200 plant species and has shown its potential prevalence on medicinal and aromatic plants during the last few years. Genomic sequence of a virus can be used to analyze evolutionary history, mechanism of evolution, host-virus interactions and the development of sustainable management strategies. In this study, the complete genomic characterization of the isolate CMV SS1, isolated from Ocimum gratissimum (February 2017 from Lucknow India), was carried out by designing overlapping primers which were specific to each RNA segment. The genome of CMV consists of tripartite RNA, viz. RNA1, RNA2 and RNA3. The nucleotide sequences of RNA1 (MT877004), RNA2 (MT877005), RNA3 (MK239129) were compared with other known isolates of CMV (subgroup IA, IB and II) and found to be closely related with subgroup IB of CMV. The RNA1, 2, and 3 shared identities of 91–93%, 92–96%, 93–98% with the isolates of subgroup IB: 89–90%, 90% and 89–93% with the sub group IA while the identities were 76%, 73%, and 75–76% with CMV isolates of subgroup II. Multiple amino-acid sequence alignment showed maximum unique substitutions in 1a protein followed by MP, 2b and CP. CP was found to be the most conserved among all five proteins, suggesting its functional importance in the development of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Anderson, B. J., Boyce, P. M., & Blanchard, C. L. (1995). RNA 4 sequences from cucumber mosaic virus subgroups I and II. Gene, 161(2), 293–294.

    Article  CAS  PubMed  Google Scholar 

  • Argos, P. (1988). A sequence motif in many polymerases. Nucleic Acids Research, 16(21), 9909–9916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigneti, G., Voinnet, O., Li, W. X., Ji, L. H., Ding, S. W., & Baulcombe, D. C. (1998). Retracted: Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739–6746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Wispelaere, M., & Rao, A. L. N. (2009). Production of cucumber mosaic virus RNA5 and its role in recombination. Virology, 384(1), 179–191.

    Article  PubMed  Google Scholar 

  • Ekpiken, E. E., Mofunanya, A. A. J., & Eyong, O. I. (2021). Mixed infection of a potyvirus and cucumber mosaic virus on Ocimum gratissimum in Okoyong and Boje, Cross River State, Nigeria. Journal of Applied Horticulture, 23(2), 150–154.

    Article  Google Scholar 

  • Gera, A., Loebenstein, G., & Raccah, B. (1979). Protein coats of two strains of cucumber mosaic virus affect transmission by Aphis gossypii. Phytopathology, 69(4), 396–399.

    Article  CAS  Google Scholar 

  • González, I., Martínez, L., Rakitina, D. V., Lewsey, M. G., Atencio, F. A., Llave, C., ... & Canto, T. (2010). Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Molecular plant-microbe interactions23(3), 294–303.

  • Guo, H. S., & Ding, S. W. (2002). A viral protein inhibits the long range signaling activity of the gene silencing signal. The EMBO Journal, 21(3), 398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habili, N., & Symons, R. H. (1989). Evolutionary relationship between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Research, 17(23), 9543–9555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Tamura, K., & Nei, M. (1994). MEGA: Molecular evolutionary genetics analysis software for microcomputers. Bioinformatics, 10(2), 189–191.

    Article  CAS  Google Scholar 

  • Liu, S., He, X., Park, G., Josefsson, C., & Perry, K. L. (2002). A conserved capsid protein surface domain of cucumber mosaic virus is essential for efficient aphid vector transmission. Journal of Virology, 76(19), 9756–9762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lot, H., Marchoux, G., Marrou, J., Kaper, J. M., West, C. K., Van Vloten-Doting, L., & Hull, R. (1974). Evidence for three functional RNA species in several strains of cucumber mosaic virus. Journal of General Virology, 22(1), 81–93.

    Article  CAS  PubMed  Google Scholar 

  • Mollel, H. G., Ndunguru, J., Sseruwagi, P., Alicai, T., Colvin, J., Navas-Castillo, J., & Fiallo-Olivé, E. (2020). African Basil (Ocimum gratissimum) is a reservoir of divergent begomoviruses in Uganda. Plant Disease, 104(3), 853–859.

    Article  CAS  PubMed  Google Scholar 

  • Nemes, K., Gellért, Á., Balázs, E., & Salánki, K. (2014). Alanine scanning of cucumber mosaic virus (CMV) 2b protein identifies different positions for cell-to-cell movement and gene silencing suppressor activity. PLoS ONE, 9(11), e112095.

    Article  PubMed  PubMed Central  Google Scholar 

  • Palukaitis, P., & García-Arenal, F. (2003). Cucumoviruses. Advances in Virus Research, 62, 241–323.

    Article  CAS  PubMed  Google Scholar 

  • Perry, K. L., Zhang, L., & Palukaitis, P. (1998). Amino acid changes in the coat protein of cucumber mosaic virus differentially affect transmission by the aphids Myzus persicae and Aphis gossypii. Virology, 242(1), 204–210.

    Article  CAS  PubMed  Google Scholar 

  • Pirone, T. P., & Blanc, S. (1996). Helper-dependent vector transmission of plant viruses. Annual Review of Phytopathology, 34(1), 227–247.

    Article  CAS  PubMed  Google Scholar 

  • Quemada, H., Kearney, C., Gonsalves, D., & Slightom, J. L. (1989). Nucleotide sequences of the coat protein genes and flanking regions of cucumber mosaic virus strains C and WL RNA 3. Journal of General Virology, 70(5), 1065–1073.

    Article  CAS  PubMed  Google Scholar 

  • Raj S. K., Kumar S., Gautam K. K., Kaur C., Samad A., Zaim M., Hallan V., & Singh R. (2017). The progress of research on Cucumoviruses in India. In B. Mandal, G. P. Rao, V. K. Baranwal, & R. K. Jain (Eds.), A Century of Plant Virology in India (pp. 217–253). Springer.

  • Roossinck, M. J., Zhang, L., & Hellwald, K. H. (1999). Rearrangements in the 5′ nontranslated region and phylogenetic analyses of cucumber mosaic virus RNA 3 indicate radial evolution of three subgroups. Journal of Virology, 73(8), 6752–6758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio, L., Galipienso, L., & Ferriol, I. (2020). Detection of plant viruses and disease management: Relevance of genetic diversity and evolution. Frontiers in Plant Science, 11, 1092.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozanov, M. N., Koonin, E. V., & Gorbalenya, A. E. (1992). Conservation of the putative methyltransferase domain: A hallmark of the ‘Sindbis-like’supergroup of positive-strand RNA viruses. Journal of General Virology, 73(8), 2129–2134.

    Article  CAS  PubMed  Google Scholar 

  • Sasaki, N., Park, J. W., Maule, A. J., & Nelson, R. S. (2006). The cysteine–histidine-rich region of the movement protein of cucumber mosaic virus contributes to plasmodesmal targeting, zinc binding and pathogenesis. Virology, 349(2), 396–408.

    Article  CAS  PubMed  Google Scholar 

  • Shintaku, M. H., Zhang, L., & Palukaitis, P. (1992). A single amino acid substitution in the coat protein of cucumber mosaic virus induces chlorosis in tobacco. The Plant Cell, 4(7), 751–757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha, S., & Samad, A. (2019). First report of cucumber mosaic virus associated with yellowing mosaic disease of African basil (Ocimum gratissimum) in India. Plant Disease, 103(1), 167–167.

    Article  Google Scholar 

  • Stanković, I., Vučurović, A., Zečević, K., Petrović, B., Nikolić, D., & Delibašić, G. (2021). Characterization of cucumber mosaic virus and its satellite RNAs associated with tomato lethal necrosis in Serbia. European Journal of Plant Pathology, 160(2), 301–313.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Director, CSIR-CIMAP, Lucknow for providing necessary research facilities and DST-New Delhi for INSPIRE-SRF to Soumya Sinha

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Samad.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Human and animal studies

This article does not contain any research involving human or animal participants.

Informed consent

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1713 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Samad, A. Complete genomic characterization and evolutionary analysis of CMV isolate associated with Ocimum gratissimum. Eur J Plant Pathol 166, 1–7 (2023). https://doi.org/10.1007/s10658-023-02638-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-023-02638-7

Keywords

Navigation