Skip to main content
Log in

Preparation of cellulose-based fluorescent materials as coating pigment by use of DMSO/DBU/CO2 system

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

A series of cellulose-based fluorescent materials are prepared under relative mild conditions by use of the DMSO/1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)/CO2 system to utilize as coating pigments. Through the observation under 365 nm UV light, the cellulose-based fluorescent materials exhibit good fluorescence response and bright color. Furthermore, due to the limitation of the molecular skeleton of cellulose, the intrinsic aggregation caused quenching phenomenon commonly existed in conventional organic fluorescent pigments can be effectively inhibited, which is very helpful to retain good fluorescence response in epoxy-based coating material and its coating films. Moreover, the addition of cellulose-based fluorescent materials also increases the mechanical properties of the coating film. The increase of tensile strength and tensile modulus respectively reaches ~39% and ~66%. Solvent resistance and thermal property of the coating films generally remain unchanged. The fabrication of cellulose-based fluorescent materials in DMSO/DBU/CO2 system provides a feasible way to develop the functional application of cellulose.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  • Alamri H, Low IM (2013) Effect of water absorption on the mechanical properties of nanoclay filled recycled cellulose fibre reinforced epoxy hybrid nanocomposites. Compos Part A Appl Sci Manuf 44:23–31

    Article  CAS  Google Scholar 

  • Andanson J-M, Bordes E, Devemy J, Leroux F, Padua AAH, Gomes MFC (2014) Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem 16:2528–2538

    Article  CAS  Google Scholar 

  • Birks JB (1971) Excited states (Book reviews: photophysics of aromatic molecules). Science 174:580

    Google Scholar 

  • Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70:840–846

    Article  CAS  Google Scholar 

  • Canche-Escamilla G, Rodriguez-Laviada J, Cauich-Cupul JI, Mendizabal E, Puig JE, Herrera-Franco PJ (2002) Flexural, impact and compressive properties of a rigid-thermoplastic matrix/cellulose fiber reinforced composites. Compos Part A Appl Sci Manuf 33:539–549

    Article  Google Scholar 

  • Druel L, Niemeyer P, Milow B, Budtova T (2018) Rheology of cellulose- [DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chem 20:3993–4002

    Article  CAS  Google Scholar 

  • Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524

    Article  CAS  Google Scholar 

  • Fischer S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  • Fletcher KA, Storey IA, Hendricks AE, Pandey S, Pandey S (2001) Behavior of the solvatochromic probes Reichardt’s dye, pyrene, dansylamide, Nile Red and 1-pyrenecarbaldehyde within the room-temperature ionic liquid bmimPF6. Green Chem 3:210–215

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • HerreraFranco PJ, AguilarVega MD (1997) Effect of fiber treatment on the mechanical properties of LDPE-henequen cellulosic fiber composites. J Appl Polym Sci 65:197–207

    Article  CAS  Google Scholar 

  • Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS (2012) Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Compos B Eng 43:2434–2438

    Article  CAS  Google Scholar 

  • Jiang WZ, Shen Y, Ge YP, Zhou CJ, Wen YT, Liu HC, Liu H, Zhang ST, Lu P, Yang B (2020) A single-molecule conformation modulating crystalline polymorph of a physical π–π pyrene dimer: blue and green emissions of a pyrene excimer. J Mater Chem C 8:3367–3373

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Koehler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314

    Article  CAS  Google Scholar 

  • Llevot A, Dannecker PK, von Czapiewski M, Over LC, Soyler Z, Meier MAR (2016) Renewability is not enough: Recent advances in the sustainable synthesis of biomass-derived monomers and polymers. Chem Eur J 22:11509–11520

    Article  Google Scholar 

  • Lu TJ, Jiang M, Jiang ZG, Hui D, Wang ZY, Zhou Z (2013) W. Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos B Eng 51:28–34

    Article  CAS  Google Scholar 

  • Masoodi R, El-Hajjar RF, Pillai KM, Sabo R (2012) Mechanical characterization of cellulose nanofiber and bio-based epoxy composite. Mater Des 36:570–576

    Article  CAS  Google Scholar 

  • Mccormick CL, Dawsey TR (1990) Preparation of cellulose derivatives via ring-opening reactions with cyclic reagents in lithium chloride/N, N-dimethylacetamide. Macromolecules 23:606–3610

    Google Scholar 

  • Onwukamike KN, Tassaing T, Grelier S, Grau E, Cramail H, Meier MAR (2017) Detailed understanding of the DBU/CO2 switchable solvent system for cellulose solubilization and derivatization. ACS Sustain Chem Eng 6:1496–1503

    Article  Google Scholar 

  • Rahman MH, Liao S-C, Chen H-L, Chen J-H, Ivanov VA, Chu PPJ, Chen S-A (2009) Aggregation of conjugated polymers in aromatic solvent. Langmuir 25:1667–1674

    Article  CAS  Google Scholar 

  • Sdrobis A, Darie RN, Totolin M, Cazacu G, Vasile C (2012) Low density polyethylene composites containing cellulose pulp fibers. Compos B Eng 43:1873–1880

    Article  CAS  Google Scholar 

  • Song L, Yang Y, Xie H, Liu E (2015) Cellulose Dissolution and inSitu grafting in a reversible system using an organocatalyst and carbon dioxide. Chemsuschem 8:3217–3221

    Article  CAS  Google Scholar 

  • Sugino M, Hatanaka K, Miyano T, Hisaki I, Miyata M, Sakon A, Uekusa H, Tohnai N (2014) Water inclusion as a trigger for modulation of anthracene arrangement and fluorescence emission of organic salt. Tetrahedron Lett 55:732–736

    Article  CAS  Google Scholar 

  • Sun YF, Chen ZY, Zhu L, Xu SH, Wu RT, Cui YP (2013) Tunable solid-state fluorescence emission and red upconversion luminescence of novel anthracene-based fluorophores. Color Technol 129:165–172

    Article  CAS  Google Scholar 

  • Teng J, Zhang Y, Ruan X (2010) Some improtant sciemtific problems for development of renewable and new energy - The only way for development of non-fossil energy. Prog Geophys 25:1115–1152

    Google Scholar 

  • Tian W, Zhang J, Yu J, Wu J, Nawaz H, Zhang J, He J, Wang F (2016) Cellulose-based solid fluorescent materials. Adv Opt Mater 4:2044–2050

    Article  CAS  Google Scholar 

  • Tian W, Zhang J, Yu J, Wu J, Zhang J, He J, Wang F (2018) Phototunable full-color emission of cellulose-based dynamic fluorescent materials. Adv Funct Mater 28:1703548

    Article  Google Scholar 

  • Wu J, Zhang J, Zhang H, He JS, Ren Q, Guo M (2004) Homogeneous acetylation of cellulose in a new ionic liquid. Biomacromolecules 5:266–268

    Article  CAS  Google Scholar 

  • Xie H, Yu X, Yang Y, Zhao ZK (2014) Capturing CO2 for cellulose dissolution. Green Chem 16:2422–2427

    Article  CAS  Google Scholar 

  • Xie YJ, Hill CAS, Xiao ZF, Militz H, Maia C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819

    Article  Google Scholar 

  • Xu Q, Song L, Zhang L, Hu G, Du J, Liu E, Zheng Q, Liu Y, Li N, Xie H (2017) Organocatalytic cellulose dissolution and in situ grafting of epsilon-caprolactone via ROP in a reversible DBU/DMSO/CO2 system. Chemistryselect 2:7128–7134

    Article  CAS  Google Scholar 

  • Yang Y, Song L, Peng C, Liu E, Xie H (2015) Activating cellulose via its reversible reaction with CO2 in the presence of 1,8-diazabicyclo [5.4.0] -undec-7-ene for the efficient synthesis of cellulose acetate. Green Chem 17:2758–2763

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhang L, Shi W, Wang J, Jin L, Hu G, Zheng Q, Xie H, Chen P (2019) Unique gelation and rheological properties of the cellulose/CO2-based reversible ionic liquid/DMSO solutions. Carbohydr Polym 222:115024

    Article  CAS  Google Scholar 

  • Zhang Q, Oztekin NS, Barrault J, Vigier KDO, Jerome F (2013) Activation of microcrystalline cellulose in a CO2-Based switchable system. Chemsuschem 6:593–596

    Article  CAS  Google Scholar 

  • Zheng Y, Shao Z, Li Y, Wang W (2005) Ether-ester derivatives of cellulose and their applications. J Cell Sci Technol 13:61–65

    CAS  Google Scholar 

  • Zhou J, Zhang L (2000) Solubility of cellulose in NaOH/urea aqueous solution. Polym J 32:866–870

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful for the financial support by the National Natural Science Foundation of China (21978310 & 51773217), the Key Research and Development Program of Shandong Province (2019JZZY020217), Youth Innovation Promotion Association CAS (2017339), Ningbo Natural Science Foundation (2019A610026).

Funding

The National Natural Science Foundation of China (21978310 & 51773217), the Key Research and Development Program of Shandong Province (2019JZZY020217), Youth Innovation Promotion Association CAS (2017339), Ningbo Natural Science Foundation (2019A610026).

Author information

Authors and Affiliations

Authors

Contributions

Qinghua Cao carried out the majority parts of experiments such as dissolving and modification of cellulose. He also carried out the majority parts of analysis of experimental results and writing of manuscript. Jinyue Dai guided and worked together on the preparation and characterization of epoxy coating film. Xin Bao helped performing the analysis and gave constructive discussion during experiment. Zhenyu Zhang helped to carry out the analysis of experiment and some part of manuscript preparation. Fei Liu helped performing the analysis of partially experimental data. Yuhong Feng guided the research methodology of this manuscript. Haining Na guided the analysis of partially experimental data and the writing of this manuscript. Jin Zhu guided the general conception of this study.

Corresponding authors

Correspondence to Jinyue Dai, Yuhong Feng or Haining Na.

Ethics declarations

Conflict of interests

There is no competing interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Dai, J., Bao, X. et al. Preparation of cellulose-based fluorescent materials as coating pigment by use of DMSO/DBU/CO2 system. Cellulose 28, 10373–10384 (2021). https://doi.org/10.1007/s10570-021-04184-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04184-z

Keywords

Navigation