Skip to main content
Log in

A CdS@(PEA)2SnBr4 Heterojunction Photocatalyst for High-efficiency Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The uncertain movement and high recombination of photo-generated charges lead to a low conversion efficiency for photocatalytic hydrogen evolution. The path to address such problem is to construct a high-efficiency organic/inorganic heterojunction. Quasi-2D (PEA)2SnBr4 has the better charge transport characteristics and more negative reduction potential compared with CdS. Herein, a CdS@(PEA)2SnBr4 heterojunction is firstly constructed via in-situ loading CdS nanoparticles on the surface of (PEA)2SnBr4 nanosheets. The interaction between CdS and (PEA)2SnBr4 can effectively separate photo-generated carriers via controlling the carriers of the interface migration to retain the high-energy photo-generated electrons and holes, respectively. Under the simulated sunlight, the CdS@(PEA)2SnBr4 heterojunction with optimum proportion attains a high photocatalytic hydrogen production rate of 13.38 mmol/g/h, up to 2.89 times compared with CdS. More importantly, the CdS@(PEA)2SnBr4 heterojunction possesses a beneficial stability after recycling four times. This work offers a new design thought for the construction of the photocatalytic heterojunction to the inorganic/organic system.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Han Z, Eisenberg R (2014) Fuel from water: the photochemical generation of hydrogen from water. Acc Chem Res 47:2537–2544. https://doi.org/10.1021/ar5001605

    Article  CAS  PubMed  Google Scholar 

  2. Hoelzen J, Silberhorn D, Zill T, Bensmann B, Hanke-Rauschenbach R (2022) Hydrogen-powered aviation and its reliance on green hydrogen infrastructure-Review and research gaps. Int J Hydrogen Energy 47:3108–3130. https://doi.org/10.1016/j.ijhydene.2021.10.239

    Article  CAS  Google Scholar 

  3. Hou H, Zeng X, Zhang X (2020) Production of hydrogen peroxide by photocatalytic processes. Angew Chem Int Ed 59:17356–17376. https://doi.org/10.1002/anie.201911609

    Article  CAS  Google Scholar 

  4. Nazir H, Muthuswamy N, Louis C, Jose S, Prakash J, Buan MEM, Flox C, Chavan S, Shi X, Kauranen P, Kallio T, Maia G, Tammeveski K, Lymperopoulos N, Carcadea E, Veziroglu E, Iranzo A, Kannan AM (2020) Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. Int J Hydrogen Energy 45:28217–28239. https://doi.org/10.1016/j.ijhydene.2020.07.256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song H, Luo S, Huang H, Deng B, Ye J (2022) Solar-driven hydrogen production: recent advances, challenges, and future perspectives. Acs Energy Lett 7:1043–1065. https://doi.org/10.1021/acsenergylett.1c02591

    Article  CAS  Google Scholar 

  6. Zhang S, Liu Z, Chen D, Guo Z, Ruan M (2020) Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation. Chem Eng J 395:125101. https://doi.org/10.1016/j.cej.2020.125101

    Article  CAS  Google Scholar 

  7. Cai Q, Liu Z, Han C, Tong Z, Ma C (2019) CuInS2/Sb2S3 heterostructure modified with noble metal co-catalyst for efficient photoelectrochemical water splitting. J Alloy Compd 795:319–326. https://doi.org/10.1016/j.jallcom.2019.04.312

    Article  CAS  Google Scholar 

  8. Ng B-J, Putri LK, Kong XY, Teh YW, Pasbakhsh P, Chai S-P (2020) Z-scheme photocatalytic systems for solar water splitting. Adv Sci 7:1903171. https://doi.org/10.1002/advs.201903171

    Article  CAS  Google Scholar 

  9. Yuan L, Han C, Yang M-Q, Xu Y-J (2016) Photocatalytic water splitting for solar hydrogen generation: fundamentals and recent advancements. Int Rev Phys Chem 35:1–36. https://doi.org/10.1080/0144235x.2015.1127027

    Article  CAS  Google Scholar 

  10. Tee SY, Win KY, Teo WS, Koh L-D, Liu S, Teng CP, Han M-Y (2017) Recent progress in energy-driven water splitting. Adv Sci 4:1600337. https://doi.org/10.1002/advs.201600337

    Article  CAS  Google Scholar 

  11. Wang W, Xu X, Zhou W, Shao Z (2017) Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv Sci 4:1600371. https://doi.org/10.1002/advs.201600371

    Article  CAS  Google Scholar 

  12. Zhang J, Hu W, Cao S, Piao L (2020) Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res 13:2313–2322. https://doi.org/10.1007/s12274-020-2880-z

    Article  CAS  Google Scholar 

  13. Bie C, Wang L, Yu J (2022) Challenges for photocatalytic overall water splitting. Chem 8:1567–1574. https://doi.org/10.1016/j.chempr.2022.04.013

    Article  CAS  Google Scholar 

  14. Pham TA, Ping Y, Galli G (2017) Modelling heterogeneous interfaces for solar water splitting. Nat Mater 16:408. https://doi.org/10.1038/nmat4803

    Article  CAS  Google Scholar 

  15. Chen S, Yin H, Liu P, Wang Y, Zhao H (2023) Stabilization and performance enhancement strategies for halide perovskite photocatalysts. Adv Mater 35:2203836. https://doi.org/10.1002/adma.202203836

    Article  CAS  Google Scholar 

  16. Feng Y, Chen D, Niu M, Zhong Y, Ding H, Hu Y, Wu X, Yuan Z (2023) Recent progress in metal halide perovskite-based photocatalysts: physicochemical properties, synthetic strategies, and solar-driven applications. J Mater Chem A 11:22058–22086. https://doi.org/10.1039/d3ta04149b

    Article  CAS  Google Scholar 

  17. Du F, Liu X, Liao J, Yu D, Zhang N, Chen Y, Liang C, Yang S, Fang G (2023) Improving the stability of halide perovskites for photo-, electro-, photoelectro-chemical applications. Adv Funct Mater 2312175. https://doi.org/10.1002/adfm.202312175

  18. Chen F, Huang H, Guo L, Zhang Y, Ma T (2019) The role of polarization in photocatalysis. Angew Chem Int Ed 58:10061–10073. https://doi.org/10.1002/anie.201901361

    Article  CAS  Google Scholar 

  19. Chen F, Ma T, Zhang T, Zhang Y, Huang H (2021) Atomic-level charge separation strategies in semiconductor-based photocatalysts. Adv Mater 33:2005256. https://doi.org/10.1002/adma.202005256

    Article  CAS  Google Scholar 

  20. Schumacher L, Marschall R (2022) Recent advances in semiconductor heterojunctions and Z-schemes for photocatalytic hydrogen generation. Top Curr Chem 380:53. https://doi.org/10.1007/s41061-022-00406-5

    Article  CAS  Google Scholar 

  21. Yanagi R, Zhao T, Solanki D, Pan Z, Hu S (2022) Charge separation in photocatalysts: mechanisms, physical parameters, and design principles. Acs Energy Letters 7:432–452. https://doi.org/10.1021/acsenergylett.1c02516

    Article  CAS  Google Scholar 

  22. Yang R, Fan Y, Hu J, Chen Z, Shin HS, Voiry D, Wang Q, Lu Q, Yu JC, Zeng Z (2023) Photocatalysis with atomically thin sheets. Chem Soc Rev 52:7687–7706. https://doi.org/10.1039/d2cs00205a

    Article  CAS  PubMed  Google Scholar 

  23. Ning X, Wu Y, Ma X, Zhang Z, Gao R, Chen J, Shan D, Lu X (2019) A novel charge transfer channel to simultaneously enhance photocatalytic water splitting activity and stability of CdS. Adv Func Mater 29:1902992. https://doi.org/10.1002/adfm.201902992

    Article  CAS  Google Scholar 

  24. Xie Y, Chang J, Zheng P, Zhang L, Xie T, Jiang R, Zhang Z, Yang Y, Zou M, Yin L, Zhen C, Han F, Ba K, Xu G (2023) Evidence for an interface of hybrid cocatalysts favoring photocatalytic hydrogen evolution kinetics. ACS Appl Mater Interfaces 15:59309–59318. https://doi.org/10.1021/acsami.3c10097

    Article  CAS  PubMed  Google Scholar 

  25. Zhang S, Liu Z, Yan W, Guo Z, Ruan M (2020) Decorating non-noble metal plasmonic Al on a TiO2/Cu2O photoanode to boost performance in photoelectrochemical water splitting. Chin J Catal 41:1884–1893. https://doi.org/10.1016/s1872-2067(20)63637-3

    Article  CAS  Google Scholar 

  26. Wu Y, Ruan M, Guo Z, Wang C, Liu Z (2023) Optimization of the IO3 polar group of BiOIO3 by bulk phase doping amplifies pyroelectric polarization to enhance carrier separation and improve the pyro-photo-electric catalytic performance. Appl Cat B-Environ 339:123169. https://doi.org/10.1016/j.apcatb.2023.123169

    Article  CAS  Google Scholar 

  27. Zhang X, Yin J, Nie Z, Zhang Q, Sui N, Chen B, Zhang Y, Qu K, Zhao J, Zhou H (2017) Lead-free and amorphous organic-inorganic hybrid materials for photovoltaic applications: mesoscopic CH3NH3Mn3/TiO2 heterojunction. RSC Adv 7:37419–37425. https://doi.org/10.1039/c7ra04235c

    Article  CAS  Google Scholar 

  28. Xia Y, Liang R, Yang M-Q, Zhu S, Yan G (2021) Construction of chemically bonded interface of organic/inorganic g-C3N4/LDH heterojunction for Z-schematic photocatalytic H2 generation. Nanomaterials 11:2762. https://doi.org/10.3390/nano11102762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng C, He B, Fan J, Cheng B, Cao S, Yu J (2021) An inorganic/organic S-scheme heterojunction H2-production photocatalyst and its charge transfer mechanism. Adv Mater 33:2100317. https://doi.org/10.1002/adma.202100317

    Article  CAS  Google Scholar 

  30. Gao R, He H, Bai J, Hao L, Shen R, Zhang P, Li Y, Li X (2022) Pyrene-benzothiadiazole-based Polymer/CdS 2D/2D organic/inorganic hybrid S-scheme heterojunction for efficient photocatalytic H2 evolution. Chin J Struct Chem 41:2206031–2206038. https://doi.org/10.14102/j.cnki.0254-5861.2022-0096

    Article  CAS  Google Scholar 

  31. Meng Y, Zhao Q, Liu Z (2023) The dual-function of GSH for enhancing the CdS PEC performance via constructing inorganic-organic hybrid heterojunction and organic cocatalyst. Catal Lett 153:2260–2269. https://doi.org/10.1007/s10562-022-04180-3

    Article  CAS  Google Scholar 

  32. Li Y, Liu Y, Zheng T, Li A, Levchenko GG, Han W, Pashchenko AV, Sasaki S-I, Tamiaki H, Wang X-F (2023) Efficient photocatalytic hydrogen production by organic-inorganic heterojunction structure in Chl@Cu2O/Ti3C2Tx. Green Chem 26:1511–1522. https://doi.org/10.1039/d3gc04127a

    Article  CAS  Google Scholar 

  33. Fan D, Wang Z, Yin M, Li H, Hu H, Guo F, Feng Z, Li J, Zhang D, Zhu M, Li Z (2024) Forming of organic/inorganic material heterojunction: effectively improve the carrier separation rate and solar energy utilization rate. Phys B-Condens Matter 673:415486. https://doi.org/10.1016/j.physb.2023.415486

    Article  CAS  Google Scholar 

  34. Zhang X, Chen Z, Luo Y, Han X, Jiang Q, Zhou T, Yang H, Hu J (2021) Construction of NH2-MIL-125(Ti)/CdS Z-scheme heterojunction for efficient photocatalytic H2 evolution. J Hazard Mater 405:124128. https://doi.org/10.1016/j.jhazmat.2020.124128

    Article  CAS  PubMed  Google Scholar 

  35. Li X, Dai K, Pan C, Zhang J (2020) Diethylenetriamine-functionalized CdS nanoparticles decorated on Cu2S snowflake microparticles for photocatalytic hydrogen production. Acs Appl Nano Mater 3:11517–11526. https://doi.org/10.1021/acsanm.0c02616

    Article  CAS  Google Scholar 

  36. Chen Z-Y, Huang N-Y, Xu Q (2023) Metal halide perovskite materials in photocatalysis: design strategies and applications. Coord Chem Rev 481:215031. https://doi.org/10.1016/j.ccr.2023.215031

    Article  CAS  Google Scholar 

  37. Liu F, Wang M, Liu X, Wang B, Li C, Liu C, Lin Z, Huang F (2021) A Rapid and robust light-and-solution-triggered in situ crafting of organic passivating membrane over metal halide perovskites for markedly improved stability and photocatalysis. Nano Lett 21:1643–1650. https://doi.org/10.1021/acs.nanolett.0c04299

    Article  CAS  PubMed  Google Scholar 

  38. Ren K, Yue S, Li C, Fang Z, Gasem KAM, Leszczynski J, Qu S, Wang Z, Fan M (2022) Metal halide perovskites for photocatalysis applications. J Mater Chem A 10:407–429. https://doi.org/10.1039/d1ta09148d

    Article  CAS  Google Scholar 

  39. Zhao H, Chordiya K, Leukkunen P, Popov A, Upadhyay Kahaly M, Kordas K, Ojala S (2021) Dimethylammonium iodide stabilized bismuth halide perovskite photocatalyst for hydrogen evolution. Nano Res 14:1116–1125. https://doi.org/10.1007/s12274-020-3159-0

    Article  CAS  Google Scholar 

  40. Romani L, Speltini A, Ambrosio F, Mosconi E, Profumo A, Marelli M, Margadonna S, Milella A, Fracassi F, Listorti A, De Angelis F, Malavasi L (2021) Water-stable DMASnBr3 lead-free perovskite for effective solar-driven photocatalysis. Angew Chem Int Ed 60:3611–3618. https://doi.org/10.1002/anie.202007584

    Article  CAS  Google Scholar 

  41. Romani L, Bala A, Kumar V, Speltini A, Milella A, Fracassi F, Listorti A, Profumo A, Malavasi L (2020) PEA2SnBr4: a water-stable lead-free two-dimensional perovskite and demonstration of its use as a co-catalyst in hydrogen photogeneration and organic-dye degradation. J Mater Chem C 8:9189–9194. https://doi.org/10.1039/D0TC02525A

    Article  CAS  Google Scholar 

  42. Sun X, Wu F, Zhong C, Zhu L, Li Za (2019) A structure-property study of fluoranthene-cored hole-transporting materials enables 19.3% efficiency in dopant-free perovskite solar cells. Chem Sci 10:6899–6907. https://doi.org/10.1039/c9sc01697j

    Article  CAS  PubMed  Google Scholar 

  43. Tiep NH, Ku Z, Fan HJ (2016) Recent advances in improving the stability of perovskite. Solar Cells 6:1501420. https://doi.org/10.1002/aenm.201501420

    Article  CAS  Google Scholar 

  44. Zhang Q, Chu L, Zhou F, Ji W, Eda G (2018) Excitonic properties of chemically synthesized 2D organic-inorganic hybrid perovskite nanosheets. Adv Mater 30:1704055. https://doi.org/10.1002/adma.201704055

    Article  CAS  Google Scholar 

  45. Zou Y, Guo C, Cao X, Zhang L, Chen T, Guo C, Wang J (2021) Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution. J Environ Chem Eng 9:106270. https://doi.org/10.1016/j.jece.2021.106270

    Article  CAS  Google Scholar 

  46. Ma B, Zhang R, Lin K, Liu H, Wang X, Liu W, Zhan H (2018) Large-scale synthesis of noble-metal-free phosphide/CdS composite photocatalysts for enhanced H2 evolution under visible light irradiation. Chin J Catal 39:527–533. https://doi.org/10.1016/s1872-2067(17)62931-0

    Article  CAS  Google Scholar 

  47. Yang W, Liu Y, Hu Y, Zhou M, Qian H (2012) Microwave-assisted synthesis of porous CdO-CdS core-shell nanoboxes with enhanced visible-light-driven photocatalytic reduction of Cr(VI). J Mater Chem 22:13895–13898. https://doi.org/10.1039/c2jm33010e

    Article  CAS  Google Scholar 

  48. Huang H, Xu B, Tan Z, Jiang Q, Fang S, Li L, Bi J, Wu L (2020) A facile in situ growth of CdS quantum dots on covalent triazine-based frameworks for photocatalytic H2 production. J Alloy Compd 833:155057. https://doi.org/10.1016/j.jallcom.2020.155057

    Article  CAS  Google Scholar 

  49. Hantsche H (1993) High resolution XPS of organic polymers. Adv Mater 5:778. https://doi.org/10.1002/adma.19930051035

    Article  Google Scholar 

  50. Ye H-F, Shi R, Yang X, Fu W-F, Chen Y (2018) P-doped ZnxCd1-xS solid solutions as photocatalysts for hydrogen evolution from water splitting coupled with photocatalytic oxidation of 5-hydroxymethylfurfural. Appl Catal B-Environ 233:70–79. https://doi.org/10.1016/j.apcatb.2018.03.060

    Article  CAS  Google Scholar 

  51. Zhao S, Huang J, Huo Q, Zhou X, Tu W (2016) A non-noble metal MoS2-Cd0.5Zn0.5S photocatalyst with efficient activity for high H2 evolution under visible light irradiation. J Mater Chem A 4:193–199. https://doi.org/10.1039/c5ta08365f

    Article  CAS  Google Scholar 

  52. Meng A, Zhu B, Zhong B, Zhang L, Cheng B (2017) Direct Z-scheme TiO2/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl Surf Sci 422:518–527. https://doi.org/10.1016/j.apsusc.2017.06.028

    Article  CAS  Google Scholar 

  53. Su T, Hood ZD, Naguib M, Bai L, Luo S, Rouleau CM, Ivanov IN, Ji H, Qin Z, Wu Z (2019) 2D/2D heterojunction of Ti3C2/g-C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Nanoscale 11:8138–8149. https://doi.org/10.1039/c9nr00168a

    Article  CAS  PubMed  Google Scholar 

  54. Xie S, Li Y, Sheng B, Zhang W, Wang W, Chen C, Li J, Sheng H, Zhao J (2022) Self-reconstruction of paddle-wheel copper-node to facilitate the photocatalytic CO2 reduction to ethane. Appl Catal B-Environ 310:121320. https://doi.org/10.1016/j.apcatb.2022.121320

    Article  CAS  Google Scholar 

  55. Zhang Y, Cheng Y-F, Su J, Wang W-T, Han T-F, Tan Y-X, Cao W-G (2020) Experimental investigation on the near detonation limits of propane/hydrogen/oxygen mixtures in a rectangular tube. Int J Hydrogen Energy 45:1107–1113. https://doi.org/10.1016/j.ijhydene.2019.10.249

    Article  CAS  Google Scholar 

  56. Li B, Wang W, Zhao J, Wang Z, Su B, Hou Y, Ding Z, Ong W-J, Wang S (2021) All-solid-state direct Z-scheme NiTiO3/Cd0.5Zn0.5S heterostructures for photocatalytic hydrogen evolution with visible light. J Mater Chem A 9:10270–10276. https://doi.org/10.1039/d1ta01220g

    Article  CAS  Google Scholar 

  57. Xiong Z, Hou Y, Yuan R, Ding Z, Ong W-J, Wang S (2022) Hollow NiCo2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production. Acta Phys Chim Sin 38:2111021. https://doi.org/10.3866/pku.Whxb202111021

    Article  Google Scholar 

  58. Su B, Zheng M, Lin W, Lu XF, Luan D, Wang S, Lou XW (2023) S- S-Scheme Co9S8@Cd0.8Zn0.2S-DETA hierarchical nanocages bearing organic CO2 activators for photocatalytic syngas production. Adv Energy Mater 13:2203290. https://doi.org/10.1002/aenm.202203290

    Article  CAS  Google Scholar 

  59. Zhao H, Fu H, Yang X, Xiong S, Han D, An X (2022) MoS2/CdS rod-like nanocomposites as high-performance visible light photocatalyst for water splitting photocatalytic hydrogen production. Int J Hydrogen Energy 47:8247–8260. https://doi.org/10.1016/j.ijhydene.2021.12.171

    Article  CAS  Google Scholar 

  60. Guo P, Zhao F, Hu X (2021) Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation. J Alloy Compd 867:159044. https://doi.org/10.1016/j.jallcom.2021.159044

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Gao, Cong Fan or Wu Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1311 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhou, C., Li, D. et al. A CdS@(PEA)2SnBr4 Heterojunction Photocatalyst for High-efficiency Hydrogen Production. Catal Lett (2024). https://doi.org/10.1007/s10562-024-04666-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10562-024-04666-2

Keywords

Navigation