Skip to main content
Log in

Cellulosic CuI Nanoparticles as a Heterogeneous, Recyclable Catalyst for the Borylation of α,β-Unsaturated Acceptors in Aqueous Media

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

We have demonstrated that cellulosic CuI nanoparticles could perform as an efficient heterogeneous catalyst for the synthesis of useful organoboron compounds. Desired β-borylation products were all obtained in good to excellent yields under mild conditions. This catalyst could be recovered easily and still work effectively in six runs. Notably, asymmetric synthesis of organoboron compounds was accomplished by applying a chiral phosphine ligand. This newly developed protocol provides an efficient and sustainable pathway for the formation of C-B bonds and largely extends the applied range of cellulose.

Graphical Abstract

Asymmetric and efficient synthesis of organoboron compounds was accomplished by cellulosic CuI nanoparticles combining with a chiral phosphine ligand. This newly reported strategy provides a green and sustainable method for the construction of C–B bonds and largely extends the applied range of cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anastas P, Eghbali N (2010) Chem Soc Rev 39:301–312

    Article  CAS  PubMed  Google Scholar 

  2. Gawande MB, Bonifácio VDB, Luque R, Branco PS, Varma RS (2013) Chem Soc Rev 42:5522–5551

    Article  CAS  PubMed  Google Scholar 

  3. Astruc D (2020) Chem Rev 120(2):461–463

    Article  CAS  PubMed  Google Scholar 

  4. Astruc D, Lu F, Ruiz J (2005) Angew Chem Int Chem 44(48):7852–7872

    Article  CAS  Google Scholar 

  5. Noujima A, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2011) Angew Chem Int Chem 50:2986–2989

    Article  CAS  Google Scholar 

  6. Mitsudome T, Mikami Y, Matoba M, Mizugaki T, Jitsukawa K, Kaneda K (2012) Angew Chem Int Chem 51:136–139

    Article  CAS  Google Scholar 

  7. Mitsudome T, Takahashi Y, Ichikawa S, Mizugaki T, Jitsukawa K, Kaneda K (2013) Angew Chem Int Chem 52:1481–1485

    Article  CAS  Google Scholar 

  8. Xiao B, Niu Z, Wang YG, Jia W, Shang J, Zhang L, Wang D, Fu Y, Zeng J, He W, Wu K, Li J, Yang J, Liu L, Li Y (2015) J Am Chem Soc 137:3791–3794

    Article  CAS  PubMed  Google Scholar 

  9. Das BC, Thapa P, Karki R, Schinke C, Das S, Kambhampati S, Banerjee SK, Veldhuizen PV, Verma A, Weiss LM, Evans T (2013) Future Med Chem 5(6):653–676

    Article  CAS  PubMed  Google Scholar 

  10. Byun Y, Yan J, Madhoun ASA, Johnsamuel J, Yang W, Barth RF, Eriksson S, Tjarks W (2005) J Med Chem 48:1188–1198

    Article  CAS  PubMed  Google Scholar 

  11. Hall DG (2005) Boronic acids: preparation and applications in organic synthesis and medicine. Wiley-VCH Verlag GmbH & Co. KgaA, Weinheim

    Book  Google Scholar 

  12. Fyfe JWB, Watson AJB (2017) Chem Rev 3(1):31–55

    CAS  Google Scholar 

  13. O’Farrell AM, Vliet AV, Farha KA, Cherrington JM, Campbell DA, Li X (2007) Clin Ther 29(8):1692–1705

    Article  CAS  PubMed  Google Scholar 

  14. Paramore A, Frantz S (2003) Nat Rev Drug Discov 2:611–612

    Article  CAS  PubMed  Google Scholar 

  15. Dorsey BD, Iqbal M, Chatterjee S, Menta E, Bernardini R, Bernareggi A, Cassarà PG, D’Arasmo G, Ferretti E, Munari SD, Oliva A, Pezzoni G, Allievi C, Strepponi I, Ruggeri B, Ator MA, Williams M, Mallamo JP (2008) J Med Chem 51(4):1068–1072

    Article  CAS  PubMed  Google Scholar 

  16. Cvek B (2012) Drugs Future 37(8):561–565

    Article  CAS  Google Scholar 

  17. Burkhardt ER, Matos K (2006) Chem Rev 106(7):2617–2650

    Article  CAS  PubMed  Google Scholar 

  18. Miyaura N, Suzuki A (1995) Chem Rev 95(5):2457–2483

    Article  CAS  Google Scholar 

  19. Lennox AJJ, Lloyd-Jones GC (2014) Chem Soc Rev 43:412–443

    Article  CAS  PubMed  Google Scholar 

  20. Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK (2014) Nat Chem 6:584–589

    Article  CAS  PubMed  Google Scholar 

  21. Muncipinto G, Moquist PN, Schreiber SL, Schaus SE (2011) Angew Chem Int Ed 123(35):8322–8325

    Article  Google Scholar 

  22. Miura T, Nishida Y, Morimoto M, Murakami M (2013) J Am Chem Soc 135(31):11497–11500

    Article  CAS  PubMed  Google Scholar 

  23. Ripin DHB, Cai W, Brenek SJ (2000) Tetrahedron Lett 41(31):5817–5819

    Article  CAS  Google Scholar 

  24. Wang H, Jing C, Noble A, Aggarwal VK (2020) Angew Chem Int Ed 59(39):16859–16872

    Article  CAS  Google Scholar 

  25. Sandford C, Aggarwal VK (2017) Chem Commun 53(40):5481–5494

    Article  CAS  Google Scholar 

  26. Ito H, Yamanaka H, Tateiwa JI, Hosomi A (2000) Tetrahedron Lett 41(35):6821–6825

    Article  CAS  Google Scholar 

  27. Kou T, Jun T, Tatsuo I, Norio M (2000) Chem Lett 29(2):126–127

    Article  Google Scholar 

  28. Bonet A, Guláys H, Koshevoy IO, Estevan F, Sanaú M, Úbeda MA, Fernández E (2010) Chem Eur J 16(21):6382–6390

    Article  CAS  PubMed  Google Scholar 

  29. Bell NJ, Cox AJ (2004) Chem Commun (16):1854–1855

  30. Hirano K, Yorimitsu H, Oshima K (2007) Org Lett 9(24):5031–5033

    Article  CAS  PubMed  Google Scholar 

  31. Takushi S, Takahiro A, Kenji T, Li Z, Hisao N (2009) Chem Commun (40):5987–8989

  32. Kajiwara T, Terabayashi T, Yamashita M, Nozaki K (2008) Angew Chem Int Ed 47(35):6606–6610

    Article  CAS  Google Scholar 

  33. Parra A, Trulli L, Tortosa M (2020) PATAI’S chemistry of functional groups. Wiley, Hoboken, pp 1–82

    Book  Google Scholar 

  34. Mun S, Lee JE, Yun J (2006) Org Lett 8(21):4887–4889

    Article  CAS  PubMed  Google Scholar 

  35. Thorpe SB, Calderone JA, Santos WL (2012) Org Lett 14(7):1918–1921

    Article  CAS  PubMed  Google Scholar 

  36. Stavber G, Časar Z (2014) ChemCatChem 6(8):2162–2174

    Article  CAS  Google Scholar 

  37. Kobayashi S, Xu P, Endo T, Ueno M, Kitanosono T (2012) Angew Chem Int Ed 51(51):12763–12766

    Article  CAS  Google Scholar 

  38. Kitanosono T, Xu P, Isshiki S, Zhu L, Kobayashi S (2014) Chem Commun 50(66):9336–9339

    Article  CAS  Google Scholar 

  39. Kitanosono T, Xu P, Kobayashi S (2014) Chem Asian J 9(1):179–188

    Article  CAS  PubMed  Google Scholar 

  40. Zhu L, Kitanosono T, Xu P, Kobayashi S (2015) Chem Commun 51(58):11685–11688

    Article  CAS  Google Scholar 

  41. Zhu L, Kitanosono T, Xu P, Kobayashi S (2015) Beilstein J Org Chem 11:2007–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Niu Z, Chen J, Chen Z, Ma M, Song C, Ma Y (2015) J Org Chem 80(1):602–608

    Article  CAS  PubMed  Google Scholar 

  43. Zhou XF, Sun YY, Wu YD, Dai JJ, Xu J, Huang Y, Xu HJ (2016) Tetrahedron 72(37):5691–5698

    Article  CAS  Google Scholar 

  44. Wu W, Han B, Yan F, Ding Y, Li B, Wang L, Zhu L (2018) Nanomaterials 8(5):326–335

    Article  CAS  Google Scholar 

  45. Zhu L, Wang LS, Li BJ, Fu BQ, Zhang CP (2016) Chem Commun 52(38):6371–6374

    Article  CAS  Google Scholar 

  46. Zhu L, Li B, Wang S, Wang W, Wang L, Ding Y, Qin C (2018) Polymers 10(4):385–394

    Article  PubMed Central  CAS  Google Scholar 

  47. Xu Y, Zhang L, Cui Y (2008) J Appl Polym Sci 110(5):2996–3000

    Article  CAS  Google Scholar 

  48. Reddy KR, Kumar NS (2006) Synlett 14:2246–2250

    Article  CAS  Google Scholar 

  49. Chavan PV, Pandit KS, Desai UV, Kulkarni MA, Wadgaonkar PP (2014) RSC Adv 4(79):42137–42146

    Article  CAS  Google Scholar 

  50. Bahsis L, Ayouchia HBE, Anane H, Benhamou K, Kaddami H, Julve M, Stiriba S-E (2018) Int J Biol Macromol 119:849–856

    Article  CAS  PubMed  Google Scholar 

  51. Gao S, Li Z, Yang S, Jiang K, Li Y, Zeng H, Li L, Wang H (2009) ACS Appl Mater Interfaces 1(9):2080–2085

    Article  CAS  PubMed  Google Scholar 

  52. Lee JE, Yun J (2007) Angew Chem Int Ed 47(1):145–147

    Article  CAS  Google Scholar 

  53. Isegawa M, Sameera WMC, Sharma AK, Kitanosono T, Kato M, Kobayashi S, Morokuma K (2017) ACS Catal 7(8):5370–5380

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 21774029), the Natural Science Foundation of Hubei Province of China (Nos. 2019CFB237, 2019CFB354), Hubei University Excellent Young and Middle-aged Science and Technology Innovation Team Project (No.T201816), the Natural Science Foundation of Xiaogan City (Nos. XGKJ201910047, XGKJ2020010053). Lei Zhu thanks the “Chutian Scholar” Program of Hubei Province. Lijie Zhou and Biao Han thanks the High Level Master Degree Thesis Cultivation Project of Hubei Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoyao Zhang, Xianbao Wang or Lei Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Han, B., Zhang, Y. et al. Cellulosic CuI Nanoparticles as a Heterogeneous, Recyclable Catalyst for the Borylation of α,β-Unsaturated Acceptors in Aqueous Media. Catal Lett 151, 3220–3229 (2021). https://doi.org/10.1007/s10562-021-03571-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03571-2

Keywords

Navigation