Skip to main content
Log in

Performance and Mechanistic Aspects of Ag/MgO/\({\varvec{\gamma}}\)-Al2O3 as a Passive NOx Adsorber

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The potential of Ag/MgO/\(\gamma \)-Al2O3 (Ag/Mg–Al) as a passive NOx adsorber is evaluated, and is found to be superior as compared to Ag/\(\gamma \)-Al2O3. Two different adsorption sites exist on both Ag/Mg–Al and Ag/\(\gamma \)-Al2O3, and it is inferred that the primary role of MgO is not to provide additional adsorption sites but to decrease the Ag particle size, which results in a higher activity towards NOx adsorption. The product distribution profile with either NO or NO2 in the feed is found to be nearly the same at early times, which indicates the formation of the same surface species with either of the reactants. It is deduced that the facile conversion of nitrites to nitrates occurs in the presence of H2, but the extent of conversion decreases at longer times. A sequential configuration of the in-house Ag/Mg–Al and a commercial Cu/SSZ-13 catalyst yielded a NOx reduction efficiency of 85% at low temperatures as against 7% with the standalone Cu/SSZ-13 catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(m\) :

Mass of the catalyst (g)

\({\overline{\text{N}}}_{{{\text{NO}}_{x} }}\) :

Moles of NOx adsorbed per unit mass of catalyst (mol/g)

\(\left[ {{\text{NO}}_{x} } \right]_{in}\) :

NOx concentration at the inlet of catalyst bed (mol/m3)

\(\left[ {{\text{NO}}_{x} } \right]_{out}\) :

NOx concentration at the outlet of catalyst bed (mol/m3)

\(\dot{\vartheta }\) :

Total volumetric flow rate (m3/s)

\({\text{X}}_{{{\text{NO}}_{x} }}\) :

Steady-state NOx conversion (%)

\(t\) :

Time (s)

\(\eta\) :

Cumulative NOx adsorption and reduction efficiency (%)

References

  1. Gu Y, Epling WS (2019) Passive NOx adsorber: an overview of catalyst performance and reaction chemistry. Appl Catal A Gen 570:1–14. https://doi.org/10.1016/j.apcata.2018.10.036

    Article  CAS  Google Scholar 

  2. Ryou YS, Lee J, Lee H et al (2019) Effect of various activation conditions on the low temperature NO adsorption performance of Pd/SSZ-13 passive NOx adsorber. Catal Today 320:175–180. https://doi.org/10.1016/j.cattod.2017.11.030

    Article  CAS  Google Scholar 

  3. Doronkin DE, Fogel S, Tamm S et al (2012) Study of the “Fast SCR”-like mechanism of H2-assisted SCR of NOx with ammonia over Ag/Al2O3. Appl Catal B Environ 113–114:228–236. https://doi.org/10.1016/j.apcatb.2011.11.042

    Article  CAS  Google Scholar 

  4. Malamis SA, Harold MP, Epling WS (2019) Coupled NO and C3H6 trapping, release and conversion on Pd/BEA: evaluation of the Lean Hydrocarbon NOx trap. Ind Eng Chem Res 58:22912–22923. https://doi.org/10.1021/acs.iecr.9b04919

    Article  CAS  Google Scholar 

  5. Ren S, Schmieg SJ, Koch CK et al (2015) Investigation of Ag-based low temperature NOx adsorbers. Catal Today 258:378–385. https://doi.org/10.1016/j.cattod.2015.02.008

    Article  CAS  Google Scholar 

  6. Jiang Q, Wang C, Shen M et al (2019) The first non-precious metal passive NOx adsorber for cold-start applications. Catal Commun 125:103–107. https://doi.org/10.1016/j.catcom.2019.04.004

    Article  CAS  Google Scholar 

  7. Satokawa S, Shibata J, Shimizu KI et al (2003) Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3. Appl Catal B Environ 42:179–186. https://doi.org/10.1016/S0926-3373(02)00231-X

    Article  CAS  Google Scholar 

  8. Thomas C (2015) On an additional promoting role of hydrogen in the H2-assisted C3H6-SCR of NOx on Ag/Al2O3: a lowering of the temperature of formation-decomposition of the organo-NOx intermediates? Appl Catal B Environ 162:454–462. https://doi.org/10.1016/j.apcatb.2014.07.021

    Article  CAS  Google Scholar 

  9. Männikkö M, Wang X, Skoglundh M, Härelind H (2016) Characterization of the active species in the silver/alumina system for lean NOx reduction with methanol. Catal Today 267:76–81. https://doi.org/10.1016/j.cattod.2016.01.014

    Article  CAS  Google Scholar 

  10. Kim PS, Kim MK, Cho BK et al (2013) Effect of H2 on deNOx performance of HC-SCR over Ag/Al2O3: morphological, chemical, and kinetic changes. J Catal 301:65–76. https://doi.org/10.1016/j.jcat.2013.01.026

    Article  CAS  Google Scholar 

  11. Xu G, Ma J, Wang L et al (2019) Insight into the origin of sulfur tolerance of Ag/Al2O3 in the H2–C3H6-SCR of NOx. Appl Catal B Environ 244:909–918. https://doi.org/10.1016/j.apcatb.2018.11.050

    Article  CAS  Google Scholar 

  12. Breen JP, Burch R (2006) A review of the effect of the addition of hydrogen in the selective catalytic reduction of NOx with hydrocarbons on silver catalysts. Top Catal 39:53–58. https://doi.org/10.1007/s11244-006-0037-2

    Article  CAS  Google Scholar 

  13. Azis MM, Härelind H, Creaser D (2015) On the role of H2 to modify surface NOx species over Ag-Al2O3 as lean NOx reduction catalyst: TPD and DRIFTS studies. Catal Sci Technol 5:296–309. https://doi.org/10.1039/c4cy00816b

    Article  CAS  Google Scholar 

  14. Shibata J, Shimizu KI, Satokawa S et al (2003) Promotion effect of hydrogen on surface steps in SCR of NO by propane over alumina-based silver catalyst as examined by transient FT-IR. Phys Chem Chem Phys 5:2154–2160. https://doi.org/10.1039/b302352d

    Article  CAS  Google Scholar 

  15. Tamm S, Vallim N, Skoglundh M, Olsson L (2013) The influence of hydrogen on the stability of nitrates during H2-assisted SCR over Ag/Al2O3 catalysts—a DRIFT study. J Catal 307:153–161. https://doi.org/10.1016/j.jcat.2013.07.003

    Article  CAS  Google Scholar 

  16. Yu Y, He H, Zhang X, Deng H (2014) A common feature of H2-assisted HC-SCR. Catal Sci Technol 4:1239–1245. https://doi.org/10.1039/c3cy01033c

    Article  CAS  Google Scholar 

  17. Bartolomeu R, Azambre B, Westermann A et al (2014) Investigation of the nature of silver species on different Ag-containing NOx reduction catalysts: on the effect of the support. Appl Catal B Environ 150–151:204–217. https://doi.org/10.1016/j.apcatb.2013.12.021

    Article  CAS  Google Scholar 

  18. Johnson WL, Fisher GB, Toops TJ (2012) Mechanistic investigation of ethanol SCR of NOx over Ag/Al2O3. Catal Today 184:166–177. https://doi.org/10.1016/j.cattod.2011.12.002

    Article  CAS  Google Scholar 

  19. USDRIVE protocol: 2018_LTAT_Low-Temperature-Storage-Protocol https://cleers.org/wp-content/uploads/2018/03/2018_LTAT_Low-Temperature-Storage-Protocol.pdf

  20. Krishnanunni J, Bhankar H, Chugh D et al (2020) Strategies for stable operation of a H2-ICE at high equivalence ratios with use of unburnt and externally injected hydrogen for reducing NOx emissions. Int J Hydrog Energy 45:22125–22137. https://doi.org/10.1016/j.ijhydene.2020.05.212

    Article  CAS  Google Scholar 

  21. Krishnan Unni J, Bhatia D, Dutta V et al (2017) Development of hydrogen fuelled low NOx engine with exhaust gas recirculation and exhaust after treatment. SAE Int J Engines 10:46–54. https://doi.org/10.4271/2017-26-0074

    Article  Google Scholar 

  22. Tamm S, Andonova S, Olsson L (2014) Silver as storage compound for NOx at low temperatures. Catal Lett 144:674–684. https://doi.org/10.1007/s10562-014-1211-y

    Article  CAS  Google Scholar 

  23. Son IH, Kim MC, Koh HL, Kim KL (2001) On the promotion of Ag/γ-Al2O3 by Cs for the SCR of NO by C3H6. Catal Lett 75:191–197. https://doi.org/10.1023/A:1016796022644

    Article  CAS  Google Scholar 

  24. More PM, Jagtap N, Kulal AB et al (2014) Magnesia doped Ag/Al2O3-Sulfur tolerant catalyst for low temperature HC-SCR of NOx. Appl Catal B Environ 144:408–415. https://doi.org/10.1016/j.apcatb.2013.07.044

    Article  CAS  Google Scholar 

  25. Bethke KA, Kung HH (1997) Supported Ag catalysts for the lean reduction of NO with C3H6. J Catal 172:93–102. https://doi.org/10.1006/jcat.1997.1794

    Article  CAS  Google Scholar 

  26. Kabin KS, Khanna P, Muncrief RL et al (2006) Monolith and TAP reactor studies of NOX storage on Pt/BaO/Al2O3: elucidating the mechanistic pathways and roles of Pt. Catal Today 114:72–85. https://doi.org/10.1016/j.cattod.2006.02.004

    Article  CAS  Google Scholar 

  27. Prinetto F, Ghiotti G, Nova I et al (2003) In situ FT-IR and reactivity study of NOx storage over Pt-Ba/Al2O3 catalysts. Phys Chem Chem Phys 5:4428–4434. https://doi.org/10.1039/b305815h

    Article  CAS  Google Scholar 

  28. Hess C, Lunsford JH (2003) NO2 storage and reduction in barium oxide supported on magnesium oxide studied by in situ Raman spectroscopy. J Phys Chem B 107:1982–1987. https://doi.org/10.1021/jp022054w

    Article  CAS  Google Scholar 

  29. Porta A, Pellegrinelli T, Castoldi L et al (2018) Low temperature NOx adsorption study on Pd-promoted zeolites. Top Catal 61:2021–2034. https://doi.org/10.1007/s11244-018-1045-8

    Article  CAS  Google Scholar 

  30. Bhatia D, McCabe RW, Harold MP, Balakotaiah V (2009) Experimental and kinetic study of NO oxidation on model Pt catalysts. J Catal 266:106–119. https://doi.org/10.1016/j.jcat.2009.05.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Sasol Germany GmbH for providing the doped alumina samples used in this work. One of the authors (Prateek Khatri) would like to acknowledge Pranav V. Kherdekar and Marvi Kaushik (Department of Chemical Engineering, IIT Delhi) for the technical discussions. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Divesh Bhatia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 1229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatri, P., Bhatia, D. Performance and Mechanistic Aspects of Ag/MgO/\({\varvec{\gamma}}\)-Al2O3 as a Passive NOx Adsorber. Catal Lett 151, 3298–3312 (2021). https://doi.org/10.1007/s10562-021-03565-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03565-0

Keywords

Navigation