Skip to main content
Log in

The State of the LPO—AOD System and the Relative Length of Telomeric Repeats in the Chromosomes of Blood Leukocytes in Obstructive Sleep Apnea Syndrome

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We analyzed the relative length of telomeric repeats in peripheral blood leukocytes and indicators of oxidative stress in 32 men (mean age 51.2±3.1 years) with obstructive sleep apnea syndrome (OSAS). The control group consisted of volunteers without OSAS. The relative length of telomeres was determined in a DNA sample isolated from venous whole blood samples. The length of telomeric repeats of chromosomes was determined using quantitative real-time PCR (3 times for each DNA sample); albumin served as an internal control. The intensity of LPO processes and antioxidant protection was assessed by conventional spectrophotometric methods. It was found that in patients with OSAS, the relative length of telomeric repeats was lower by 48%, the levels of substrates and products of LPO were higher (double bonds and diene conjugates by 34 and 19%, respectively), and antioxidant protection indicators were lower (concentrations of fat-soluble vitamins α-tocopherol and retinol by 18 and 19.3%, respectively, total antioxidant activity by 32.9%) than in volunteers of the control group. Thus, we can conclude that the nucleotide sequences are reduced in patients with OSAS under conditions of intensified free radical oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanders JL, Fitzpatrick AL, Boudreau RM, Arnold AM, Aviv A, Kimura M, Fried LF, Harris TB, Newman AB. Leukocyte telomere length is associated with noninvasively measured age-related disease: The Cardiovascular Health Study. J. Gerontol. A Biol. Sci. Med. Sci. 2012;67(4):409-416. doi: https://doi.org/10.1093/gerona/glr173

  2. Madaeva IM, Kurashova NA, Semenova NV, Kolesnikova LI, Kolesnikov SI. Association of nocturnal intermittent hypoxia with heat shock protein 70 in patients with obstructive sleep apnea: a pilot study. Russ. Open Med. J. 2020;9(4):e0401. doi: https://doi.org/10.15275/rusomj.2020.0401

    Article  CAS  Google Scholar 

  3. Huang P, Zhou J, Chen S, Zou C, Zhao X, Li J. The association between obstructive sleep apnea and shortened telomere length: a systematic review and meta-analysis. Sleep Med. 2018;48:107-112. doi: https://doi.org/10.1016/j.sleep.2017.09.034

    Article  PubMed  CAS  Google Scholar 

  4. Zhao J, Miao K, Wang H, Ding H, Wang DW. Association between telomere length and type 2 diabetes mellitus: a meta-analysis. PLoS One. 2013;8(11):e79993. doi: https://doi.org/10.1371/journal.pone.0079993

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ahmed W, Lingner J. Impact of oxidative stress on telomere biology. Differentiation. 2018;99:21-27. doi: https://doi.org/10.1016/j.diff.2017.12.002

    Article  PubMed  CAS  Google Scholar 

  6. Doroshchuk NA, Tikhaze AK, Lankin VZ, Konovalova GG, Mednikova TK, Postnov AYu, Kukharchuk VV. The influence of oxidative stress on the length of telomeric repeats in chromosomes of white blood cells in patients with different risk of cardiovascular death and patients with coronary artery disease. Kardiol. Vestn. 2017;12(1):32-37. Russian.

  7. Tempaku PF, Tufik S. The paradigm of obstructive sleep apnea in aging: interactions with telomere length. Sleep Med. 2018;48:155-156. doi: https://doi.org/10.1016/j.sleep.2018.05.009

    Article  PubMed  Google Scholar 

  8. Wang L, Lu Z, Zhao J, Schank M, Cao D, Dang X, Nguyen LN, Nguyen LNT, Khanal S, Zhang J, Wu XY, El Gazzar M, Ning S, Moorman JP, Yao ZQ. Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell. 2021;20(12):e13513. doi: https://doi.org/10.1111/acel.13513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL. Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis. Mol. Cell. 2019;75(1):117-130.e6. doi: https://doi.org/10.1016/j.molcel.2019.04.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Coluzzi E, Leone S, Sgura A. Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells. 2019;8(1):19. doi: https://doi.org/10.3390/cells8010019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Madaeva IM, Kurashova NA, Ukhinov EB, Berdina ON, Semenova NV, Madaev VV, Kolesnikova LI, Kolesnikov SI. Changes in the telomeres length in patients with obstructive sleep apnea after continuous positive airway pressure therapy: a pilot study. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova. 2022;122(5, Vyp. 2):52-57. doi: https://doi.org/10.17116/jnevro202212205252

  12. Madaeva IM, Kurashova NA, Semenova NV, Ukhinov EB, Kolesnikov SI, Kolesnikova LI. Free Radical Oxidation of Lipids as an Indicator of the Effectiveness of CPAP Therapy in Apnea Syndrome. Bull. Exp. Biol. Med. 2021;170(6):799-801. doi: https://doi.org/10.1007/s10517-021-05158-8

    Article  PubMed  CAS  Google Scholar 

  13. Cawthon RM. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009;37(3):e21. doi: https://doi.org/10.1093/nar/gkn1027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Furumoto K, Inoue E, Nagao N, Hiyama E, Miwa N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci. 1998;63(11):935-948. doi: https://doi.org/10.1016/s0024-3205(98)00351-8

    Article  PubMed  CAS  Google Scholar 

  15. Kim KS, Kwak JW, Lim SJ, Park YK, Yang HS, Kim HJ. Oxidative Stress-induced Telomere Length Shortening of Circulating Leukocyte in Patients with Obstructive Sleep Apnea. Aging Dis. 2016;7(5):604-613. doi: https://doi.org/10.14336/AD.2016.0215

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lankin V, Konovalova G, Tikhaze A, Shumaev K, Kumskova E, Viigimaa M. The initiation of free radical peroxidation of low-density lipoproteins by glucose and its metabolite methylglyoxal: a common molecular mechanism of vascular wall injury in atherosclerosis and diabetes. Mol. Cell. Biochem. 2014;395(1-2):241-252. doi: https://doi.org/10.1007/s11010-014-2131-2

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Kurashova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 176, No. 7, pp. 40-43, July, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madaeva, I.M., Kurashova, N.A., Berdina, O.N. et al. The State of the LPO—AOD System and the Relative Length of Telomeric Repeats in the Chromosomes of Blood Leukocytes in Obstructive Sleep Apnea Syndrome. Bull Exp Biol Med 176, 30–33 (2023). https://doi.org/10.1007/s10517-023-05961-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05961-5

Keywords

Navigation