Skip to main content
Log in

Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

In this article, we intend to model and optimize the bullwhip effect (BWE) and net stock amplification (NSA) in a three-stage supply chain consisting of a retailer, a wholesaler, and a manufacturer under both centralized and decentralized scenarios. In this regard, firstly, the causes of BWE and NSA are mathematically formulated using response surface methodology (RSM) as a multi-objective optimization model that aims to minimize the BWE and NSA on both chains. The simultaneous analysis of the BWE and NSA is considered as the main novelty of this paper. To tackle the addressed problem, we propose a novel multi-objective hybrid evolutionary approach called MOHES; MOHES is a hybrid of two known multi-objective algorithms i.e. multi-objective electro magnetism mechanism algorithm (MOEMA) and population-based multi-objective simulated annealing (PBMOSA). We applied a co-evolutionary strategy for this purpose with eligibility of both algorithms. Proposed MOHES is compared with three common and popular algorithms (i.e. NRGA, NSGAII, and MOPSO). Since the utilized algorithms are very sensitive to parameter values, RSM with the multi-objective decision making (MODM) approach is employed to tune the parameters. Finally, the hybrid algorithm and the singular approaches are compared together in terms of some performance measures. The results indicate that the hybrid approach achieves better solutions when compared with the others, and also the results show that in a decentralized chain, the order batching factor and the demand signal processing in wholesaler are the most important factors on BWE. Conversely, in a centralized chain, factors such as rationing, shortage gaming, and lead time are the most effective at reducing the BWE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adelson, R. (1966). The dynamic behaviour of linear forecasting and scheduling rules. Journal of the Operational Research Society, 17(4), 447–462.

    Article  Google Scholar 

  • Adenso-Díaz, B., Moreno, P., Gutiérrez, E., & Lozano, S. (2012). An analysis of the main factors affecting bullwhip in reverse supply chains. International Journal of Production Economics, 135(2), 917–928.

    Article  Google Scholar 

  • Al Jaddan, O., Rajamani, L., & Rao, C. R. (2008). Non-dominated ranked genetic algorithm for solving multi-objective optimization problem: NRGA. Journal of Theoretical and Applied Information Technology. doi:10.1016/j.cie.2006.07.011.

    Google Scholar 

  • Augusto, O., Rabeau, S., Dépincé, P., & Bennis, F. (2006). Multi-objective genetic algorithms: a way to improve the convergence rate. Engineering Applications of Artificial Intelligence, 19(5), 501–510.

    Article  Google Scholar 

  • Back, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1), 3–17.

    Article  Google Scholar 

  • Baganha, M. P., & Cohen, M. A. (1998). The stabilizing effect of inventory in supply chains. Operations Research, 46(3), 72–83.

    Article  Google Scholar 

  • Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12(3), 269–283.

    Article  Google Scholar 

  • Bayraktar, E., Lenny Koh, S., Gunasekaran, A., Sari, K., & Tatoglu, E. (2008). The role of forecasting on bullwhip effect for E-SCM applications. International Journal of Production Economics, 113(1), 193–204.

    Article  Google Scholar 

  • Behnamian, J., & Fatemi Ghomi, S. (2011). Hybrid flowshop scheduling with machine and resource-dependent processing times. Applied Mathematical Modelling, 35(3), 1107–1123.

    Article  Google Scholar 

  • Behnamian, J., & Ghomi, S. (2010). Hybrid flowshop scheduling with machine and resource-dependent processing times. Applied Mathematical Modelling, 35(3), 1107–1123.

    Article  Google Scholar 

  • Behnamian, J., Fatemi Ghomi, S., & Zandieh, M. (2009). A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic. Expert Systems with Applications, 36(8), 11057–11069.

    Article  Google Scholar 

  • Behnamian, J., Zandieh, M., & Fatemi Ghomi, S. M. T. (2010). Due windows group scheduling using an effective hybrid optimization approach. The International Journal of Advanced Manufacturing Technology, 46(5), 721–735.

    Article  Google Scholar 

  • Birbil, Ş. İ., & Fang, S. C. (2003). An electromagnetism-like mechanism for global optimization. Journal of Global Optimization, 25(3), 263–282.

    Article  Google Scholar 

  • Cakir, B., Altiparmak, F., & Dengiz, B. (2011). Multi-objective optimization of a stochastic assembly line balancing: a hybrid simulated annealing algorithm. Computers & Industrial Engineering, 60(3), 376–384.

    Article  Google Scholar 

  • Chandra, C., & Grabis, J. (2005). Application of multi-steps forecasting for restraining the bullwhip effect and improving inventory performance under autoregressive demand. European Journal of Operational Research, 166(2), 337–350.

    Article  Google Scholar 

  • Chatfield, D. C., & Pritchard, A. M. (2013). Returns and the bullwhip effect. Transportation Research. Part E, Logistics and Transportation Review, 49(1), 159–175.

    Article  Google Scholar 

  • Chatfield, D. C., Kim, J. G., Harrison, T. P., & Hayya, J. C. (2004). The bullwhip effect—impact of stochastic lead time, information quality, and information sharing: a simulation study. Production and Operations Management, 13(4), 340–353.

    Article  Google Scholar 

  • Chen, L., & Lee, H. L. (2009). Information sharing and order variability control under a generalized demand model. Management Science, 55(5), 781–797.

    Article  Google Scholar 

  • Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000a). Quantifying the bullwhip effect in a simple supply chain: the impact of forecasting, lead times, and information. Management Science, 46(1), 436–443.

    Article  Google Scholar 

  • Chen, F., Ryan, J. K., & Simchi-Levi, D. (2000b). The impact of exponential smoothing forecasts on the bullwhip effect. Naval Research Logistics, 47(4), 269–286.

    Article  Google Scholar 

  • Coello Coello, C. A., & Lechuga, M. S. (2002). MOPSO: a proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 congress on evolutionary computation, 2002, CEC ’02 (Vol. 2, pp. 1051–1056). New York: IEEE Press.

    Google Scholar 

  • Croson, R., & Donohue, K. (2005). Upstream versus downstream information and its impact on the bullwhip effect. System Dynamics Review, 21(3), 249–260.

    Article  Google Scholar 

  • Croson, R., & Donohue, K. (2006). Behavioral causes of the bullwhip effect and the observed value of inventory information. Management Science, 52(3), 323–336.

    Article  Google Scholar 

  • Czyzżak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis, 7(1), 34–47.

    Article  Google Scholar 

  • Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). New York: Wiley.

    Google Scholar 

  • Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  • Dejonckheere, J., Disney, S. M., Lambrecht, M. R., & Towill, D. R. (2003). Measuring and avoiding the bullwhip effect: a control theoretic approach. European Journal of Operational Research, 147(3), 567–590.

    Article  Google Scholar 

  • Dejonckheere, J., Disney, S. M., Lambrecht, M. R., & Towill, D. R. (2004). The impact of information enrichment on the bullwhip effect in supply chains: a control engineering perspective. European Journal of Operational Research, 153(3), 727–750.

    Article  Google Scholar 

  • Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.

    Google Scholar 

  • Deshpande, P., Shukla, D., & Tiwari, M. (2011). Fuzzy goal programming for inventory management: a bacterial foraging approach. European Journal of Operational Research, 212(2), 325–336.

    Article  Google Scholar 

  • Disney, S. M., & Towill, D. R. (2003). Vendor-managed inventory and bullwhip reduction in a two-level supply chain. International Journal of Operations & Production Management, 23(6), 625–651.

    Article  Google Scholar 

  • Disney, S., Towill, D., & Van de Velde, W. (2004). Variance amplification and the golden ratio in production and inventory control. International Journal of Production Economics, 90(3), 295–309.

    Article  Google Scholar 

  • Disney, S. M., Farasyn, I., Lambrecht, M., Towill, D. R., & de Velde, W. V. (2006). Taming the bullwhip effect whilst watching customer service in a single supply chain echelon. European Journal of Operational Research, 173(1), 151–172.

    Article  Google Scholar 

  • Disney, S. M., Farasyn, I., Lambrecht, M. R., & Towill, D. R. (2007). Controlling bullwhip and inventory variability with the golden smoothing rule. European Journal of Industrial Engineering, 1(3), 241–265.

    Article  Google Scholar 

  • Dobos, I. (2011). The analysis of bullwhip effect in a HMMS-type supply chain. International Journal of Production Economics, 131(1), 250–256.

    Article  Google Scholar 

  • Elmi, A., Solimanpur, M., & Topaloglu, S. (2011). A simulated annealing algorithm for the job shop cell scheduling problem with intercellular moves and reentrant parts. Computers & Industrial Engineering, 61(1), 171–178.

    Article  Google Scholar 

  • Fisher, M., Hammond, J., Obermeyer, W., & Raman, A. (1997). Configuring a supply chain to reduce the cost of demand uncertainty. Production and Operations Management, 6(3), 211–225.

    Article  Google Scholar 

  • Forrester, J. W. (1958). Industrial dynamics: a major breakthrough for decision makers. Harvard Business Review, 36(4), 37–66.

    Google Scholar 

  • Forrester, J. W., Technology, M. I. O. (1961). Industrial dynamics (Vol. 5). Cambridge: MIT Press.

    Google Scholar 

  • Geary, S., Disney, S. M., & Towill, D. R. (2006). On bullwhip in supply chains—historical review, present practice and expected future impact. International Journal of Production Economics, 101(1), 2–18.

    Article  Google Scholar 

  • Goodwin, J. S., & Franklin, S. G. (1994). The beer distribution game: using simulation to teach systems thinking. Journal of Management Development, 13(8), 7–15.

    Article  Google Scholar 

  • Graves, S. C. (1997). A single-item inventory model for a non-stationary demand process. Cambridge: Sloan School of Management, Massachusetts Institute of Technology.

    Google Scholar 

  • Holland, W., & Sodhi, M. S. (2004). Quantifying the effect of batch size and order errors on the bullwhip effect using simulation. International Journal of Logistics Research and Applications, 7(3), 251–261.

    Article  Google Scholar 

  • Horn, J., Nafpliotis, N., & Goldberg, D. E. (1993). Multiobjective optimization using the niched pareto genetic algorithm. IlliGAL, report(93005), pp. 61801–62296.

  • Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. Proceedings of the IEEE, 81, 82–87.

    Google Scholar 

  • Hosoda, T., & Disney, S. M. (2006). On variance amplification in a three-echelon supply chain with minimum mean square error forecasting. Omega, 34(4), 344–358.

    Article  Google Scholar 

  • Hui, S. (2010). Multi-objective optimization for hydraulic hybrid vehicle based on adaptive simulated annealing genetic algorithm. Engineering Applications of Artificial Intelligence, 23(1), 27–33.

    Article  Google Scholar 

  • Hyun, C. J., Kim, Y., & Kim, Y. K. (1998). A genetic algorithm for multiple objective sequencing problems in mixed model assembly lines. Computers & Operations Research, 25(7–8), 675–690.

    Article  Google Scholar 

  • Jaksic, M., & Rusjan, B. (2008). The effect of replenishment policies on the bullwhip effect: a transfer function approach. European Journal of Operational Research, 184(3), 946–961.

    Article  Google Scholar 

  • Jamili, A., Shafia, M., & Tavakkoli-Moghaddam, R. (2011). A hybridization of simulated annealing and electromagnetism-like mechanism for a periodic job shop scheduling problem. Expert Systems with Applications, 38(5), 5895–5901.

    Article  Google Scholar 

  • Jiang, Z. Z., Ip, W., Lau, H., & Fan, Z. P. (2011). Multi-objective optimization matching for one-shot multi-attribute exchanges with quantity discounts in E-brokerage. Expert Systems with Applications, 38(4), 4169–4180.

    Article  Google Scholar 

  • Kahn, J. A. (1987). Inventories and the volatility of production. The American Economic Review, 77(4), 667–679.

    Google Scholar 

  • Kaminsky, P., & Simchi-Levi, D. (1998). A new computerized beer game: a tool for teaching the value of integrated supply chain management. In H. Lee & S. M. Ng (Eds.), POMS series in technology and operations management. Global supply chain and technology management (pp. 216–225).

    Google Scholar 

  • Kelle, P., & Milne, A. (1999). The effect of (s, S) ordering policy on the supply chain. International Journal of Production Economics, 59(1), 113–122.

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671.

    Article  Google Scholar 

  • Konicki, S. (2002). Now in bankruptcy, kmart struggled with supply chain. Information Week, 873, 26.

    Google Scholar 

  • Lee, H. L., Padmanabhan, V., & Whang, S. (1997a). The bullwhip effect in supply Chains1. Sloan Management Review, 38(3), 93–102.

    Google Scholar 

  • Lee, H. L., Padmanabhan, V., & Whang, S. (1997b). Information distortion in a supply chain: the bullwhip effect. Management Science, 43(4), 546–558.

    Article  Google Scholar 

  • Li, C., & Liu, S. (2012a). Controlling the bullwhip effect in a supply chain system with constrained information flows. Applied Mathematical Modelling, 37(4), 1897–1909.

    Article  Google Scholar 

  • Li, C., & Liu, S. (2012b). A robust optimization approach to reduce the bullwhip effect of supply chains with vendor order placement lead time delays in an uncertain environment. Applied Mathematical Modelling, 37(3), 707–718.

    Article  Google Scholar 

  • Lin, S. W., & Ying, K. C. (2013). Minimizing makespan and total flowtime in permutation flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers & Operations Research, 40(6), 1625–1647.

    Article  Google Scholar 

  • Lin, S. W., Gupta, J., Ying, K. C., & Lee, Z. J. (2009). Using simulated annealing to schedule a flowshop manufacturing cell with sequence-dependent family setup times. International Journal of Production Research, 47(12), 3205–3217.

    Article  Google Scholar 

  • Loukil, T., Teghem, J., & Fortemps, P. (2007). A multi-objective production scheduling case study solved by simulated annealing. European Journal of Operational Research, 179(3), 709–722.

    Article  Google Scholar 

  • Luong, H. T., & Phien, N. H. (2007). Measure of bullwhip effect in supply chains: the case of high order autoregressive demand process. European Journal of Operational Research, 183(1), 197–209.

    Article  Google Scholar 

  • Machuca, J. A. D., & Barajas, R. P. (2004). The impact of electronic data interchange on reducing bullwhip effect and supply chain inventory costs. Transportation Research. Part E, Logistics and Transportation Review, 40(3), 209–228.

    Article  Google Scholar 

  • Magee, J. F., & Boodman, D. M. (1967). Production planning and inventory control (Vol. 131). New York: McGraw-Hill.

    Google Scholar 

  • Marcoulaki, E. C., & Papazoglou, I. A. (2010). A dynamic screening algorithm for multiple objective simulated annealing optimization. Computer-Aided Chemical Engineering, 28, 349–354.

    Article  Google Scholar 

  • McCullen, P., & Towill, D. (2002). Diagnosis and reduction of bullwhip in supply chains. Supply Chain Management, 7(3), 164–179.

    Article  Google Scholar 

  • McMullen, P. R., & Frazier, G. V. (2000). A simulated annealing approach to mixed-model sequencing with multiple objectives on a just-in-time line. IIE Transactions, 32(8), 679–686.

    Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21(6), 1087.

    Article  Google Scholar 

  • Metters, R. (1997). Quantifying the bullwhip effect in supply chains. Journal of Operations Management, 15(2), 89–100.

    Article  Google Scholar 

  • Montgomery, D. C. (2008). Design and analysis of experiments. New York: Wiley.

    Google Scholar 

  • Montgomery, D. C., & Myers, R. H. (2002). Response surface methodology: process and product optimization using designed experiments. New York: Wiley.

    Google Scholar 

  • Moslemi, H., & Zandieh, M. (2011). Comparisons of some improving strategies on MOPSO for multi-objective (r, Q) inventory system. Expert Systems with Applications.

  • Mostaghim, S., & Teich, J. (2003). The role of ε-dominance in multi objective particle swarm optimization methods. In 2003 (Vol. 3, pp. 1764–1771). New York: IEEE Press.

    Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (1971). Response surface methodology. Boston: Allyn and Bacon.

    Google Scholar 

  • Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2009). Response surface methodology: process and product optimization using designed experiments (Vol. 705). New York: Wiley.

    Google Scholar 

  • Naish, H. F. (1994). Production smoothing in the linear quadratic inventory model. The Economic Journal, 104(425), 864–875.

    Article  Google Scholar 

  • Nam, D., & Park, C. H. (2000). Multiobjective simulated annealing: a comparative study to evolutionary algorithms. International Journal of Fuzzy Systems, 2(2), 87–97.

    Google Scholar 

  • Nepal, B., Murat, A., & Babu Chinnam, R. (2012). The bullwhip effect in capacitated supply chains with consideration for product life-cycle aspects. International Journal of Production Economics, 136(2), 318–331.

    Article  Google Scholar 

  • Neter, J., Wasserman, W., & Kutner, M. H. (1996). Applied linear regression models (Vol. 3). Homewood: Irwin.

    Google Scholar 

  • Ouyang, Y., & Daganzo, C. (2006). Counteracting the bullwhip effect with decentralized negotiations and advance demand information. Physica. A, 363(1), 14–23.

    Article  Google Scholar 

  • Ouyang, Y., & Li, X. (2010). The bullwhip effect in supply chain networks. European Journal of Operational Research, 201(3), 799–810.

    Article  Google Scholar 

  • Paik, S. K. (2003). Analysis of the causes of “bullwhip” effect in a supply chain: a simulation approach. Washington: George Washington University.

    Google Scholar 

  • Patrick, R. M., & Gregory, V. F. (2000). A simulated annealing approach to mixed-model sequencing with multiple objectives on a just-in-time line. IIE Transactions, 32(8), 679–686.

    Google Scholar 

  • Potter, A., & Disney, S. M. (2006). Bullwhip and batching: an exploration. International Journal of Production Economics, 104(2), 408–418.

    Article  Google Scholar 

  • Rabiee, M., Zandieh, M., & Jafarian, A. (2012). Scheduling of a no-wait two-machine flow shop with sequence-dependent setup times and probable rework using robust meta-heuristics.

  • Ramey, V. A. (1991). Nonconvex costs and the behavior of inventories. Journal of Political Economy, 306–334.

  • Silver, E. A., Pyke, D. F., & Peterson, R. (1998). Inventory management and production planning and scheduling (Vol. 3). New York: Wiley.

    Google Scholar 

  • Simon, H. A. (1952). On the application of servomechanism theory in the study of production control. Econometrica, 20(2), 247–268.

    Article  Google Scholar 

  • Singh, H. K., Ray, T., & Smith, W. (2010). C-PSA: constrained Pareto simulated annealing for constrained multi-objective optimization. Information Sciences, 180(13), 2499–2513.

    Article  Google Scholar 

  • Smith, K. I., Everson, R. M., & Fieldsend, J. E. (2004). Dominance measures for multi-objective simulated annealing. In Proceedings of the 2004 congress on evolutionary computation, 2004, CEC2004 (Vol. 1, pp. 23–30). IEEE Press: New York.

    Google Scholar 

  • Sodhi, M. M. S., & Tang, C. S. (2011). The incremental bullwhip effect of operational deviations in an arborescent supply chain with requirements planning. European Journal of Operational Research, 215(2), 374–382.

    Article  Google Scholar 

  • Sterman, J. D. (1989). Modeling managerial behavior: misperceptions of feedback in a dynamic decision making experiment. Management Science, 35(3), 321–339.

    Article  Google Scholar 

  • Sterman, J. (2000). Business dynamics. Homewood: Irwin.

    Google Scholar 

  • Su, C. T., & Lin, H. C. (2011). Applying electromagnetism-like mechanism for feature selection. Information Sciences, 181(5), 972–986.

    Article  Google Scholar 

  • Sucky, E. (2009). The bullwhip effect in supply chains—an overestimated problem? International Journal of Production Economics, 118(1), 311–322.

    Article  Google Scholar 

  • Suppapitnarm, A., Seffen, K., Parks, G., & Clarkson, P. (2000). A simulated annealing algorithm for multiobjective optimization. Engineering Optimization, 33(1), 59–85.

    Article  Google Scholar 

  • Ton Hien Duc, T., Luong, H. T., & Kim, Y. D. (2010). Effect of the third-party warehouse on bullwhip effect and inventory cost in supply chains. International Journal of Production Economics, 124(2), 395–407.

    Article  Google Scholar 

  • Towill, D. R. (1970). Transfer function techniques for control engineers. London: Iliffe Books.

    Google Scholar 

  • Towill, D. R. (1982). Dynamic analysis of an inventory and order based production control system. International Journal of Production Research, 20(6), 671–687.

    Article  Google Scholar 

  • Towill, D. R., Zhou, L., & Disney, S. M. (2007). Reducing the bullwhip effect: looking through the appropriate lens. International Journal of Production Economics, 108(1–2), 444–453.

    Article  Google Scholar 

  • Tsou, C. S. (2009). Evolutionary Pareto optimizers for continuous review stochastic inventory systems. European Journal of Operational Research, 195(2), 364–371.

    Article  Google Scholar 

  • Tsou, C. S., & Kao, C. H. (2006). An electromagnetism-like meta-heuristic for multi-objective optimization. In IEEE congress on evolutionary computation, 2006, CEC2006 (pp. 1172–1178). New York: IEEE Press.

    Chapter  Google Scholar 

  • Tsou, C. S., & Kao, C. H. (2008). Multi-objective inventory control using electromagnetism-like meta-heuristic. International Journal of Production Research, 46(14), 3859–3874.

    Article  Google Scholar 

  • Tsou, C. S., Hsu, C. H., & Yu, F. J. (2008). Using multi-objective electromagnetism-like optimization to analyze inventory tradeoffs under probabilistic demand. Journal of Scientific & Industrial Research, 67(8), 569–573.

    Google Scholar 

  • Vahdani, B., & Zandieh, M. (2010). Scheduling trucks in cross-docking systems: robust meta-heuristics. Computers & Industrial Engineering, 58(1), 12–24.

    Article  Google Scholar 

  • Van Hentenryck, P., & Vergados, Y. (2007). Population-based simulated annealing for traveling tournaments. In International conference, principles and practice of constraint programming, Paphos, Cyprus (Vol. 22, p. 267). Menlo Park, Cambridge, London: AAAI Press; MIT Press.

    Google Scholar 

  • Varadharajan, T., & Rajendran, C. (2005). A multi-objective simulated-annealing algorithm for scheduling in flowshops to minimize the makespan and total flowtime of jobs. European Journal of Operational Research, 167(3), 772–795.

    Article  Google Scholar 

  • Vassian, H. J. (1955). Application of discrete variable servo theory to inventory control. Journal of the Operations Research Society of America, 3(3), 272–282.

    Article  Google Scholar 

  • Warburton, R. D. H. (2004). An analytical investigation of the bullwhip effect. Production and Operations Management, 13(2), 150–160.

    Article  Google Scholar 

  • Wright, D., & Yuan, X. (2008). Mitigating the bullwhip effect by ordering policies and forecasting methods. International Journal of Production Economics, 113(2), 587–597.

    Article  Google Scholar 

  • Wu, S., Gan, W., & Wei, F. (2011). Analysis of bullwhip effect based on ABMS. Procedia Engineering, 15, 4276–4281.

    Article  Google Scholar 

  • Xu, K., Dong, Y., & Evers, P. T. (2001). Towards better coordination of the supply chain. Transportation Research. Part E, Logistics and Transportation Review, 37(1), 35–54.

    Article  Google Scholar 

  • Yao, D. Q. (2001). Study of bullwhip effect and channel design in supply chains. Milwaukee: University of Wisconsin–Milwaukee.

    Google Scholar 

  • Zhang, X. (2004). The impact of forecasting methods on the bullwhip effect. International Journal of Production Economics, 88(1), 15–27.

    Article  Google Scholar 

  • Zhang, X., & Burke, G. J. (2011). Analysis of compound bullwhip effect causes. European Journal of Operational Research, 210(3), 514–526.

    Article  Google Scholar 

  • Zhang, Y., Rao, Y., & Zhou, M. (2007). GASA hybrid algorithm applied in airline crew rostering system. Tsinghua Science and Technology, 12, 255–259.

    Article  Google Scholar 

  • Zhou, E., & Chen, X. (2010). A new population-based simulated annealing algorithm. IEEE Transactions on Evolutionary Computation. doi:10.1109/WSC.2010.5679069.

    Google Scholar 

  • Zhou, L., Disney, S., & Towill, D. R. (2010). A pragmatic approach to the design of bullwhip controllers. International Journal of Production Economics, 128(2), 556–568.

    Article  Google Scholar 

  • Zipkin, P. H. (2000). Foundations of inventory management (Vol. 2). Boston: McGraw-Hill.

    Google Scholar 

  • Zotteri, G. (2012). An empirical investigation on causes and effects of the bullwhip effect: evidence from the personal care sector. International Journal of Production Economics.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Devika.

Appendix

Appendix

Table 8 Experimental design matrix and response based on experimental runs proposed by CCD (central composite designs) to estimate the best function in scenario 1
Table 9 Experimental design matrix and response based on experimental runs proposed by CCD design to estimate the best function in scenario 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devika, K., Jafarian, A., Hassanzadeh, A. et al. Optimizing of bullwhip effect and net stock amplification in three-echelon supply chains using evolutionary multi-objective metaheuristics. Ann Oper Res 242, 457–487 (2016). https://doi.org/10.1007/s10479-013-1517-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-013-1517-y

Keywords

Navigation