Skip to main content
Log in

A fast transient response low-dropout regulator with all-NPN push–pull buffer in 0.6-μm bipolar process

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a fast transient response low-dropout (LDO) regulator with all-NPN push–pull buffer in 0.6-μm bipolar process. In order to improve the transient response, an all-NPN push–pull buffer is proposed. Based on single Miller capacitance (SMC), the use of the all-NPN push–pull buffer overcomes the shortcomings of the equivalent series resistance (ESR) that requires strict output capacitor types. Besides, the proposed merging structure of bandgap reference and error amplifier not only improves the transient response, but also simplifies the circuit and reduces the output noise. Implemented and fabricated in a 0.6-μm bipolar process, the proposed LDO regulator occupies an active area of 1.6 mm2. The measured maximum load current is 200 mA, and the circuit can work at the load current of 300 mA. Moreover, the measured line regulation and load regulation are 0.8 mV/V and 0.09 mV/mA, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wen,K., Liu, S., & Li, Y. (2020). A voltage-adjustable output-capacitorless LDO regulator with split-length current mirror compensation and overshoot/undershoot reduction. Analog Integrated Circuits and Signal Processing, 105, 459–470.

    Article  Google Scholar 

  2. Tang, J., Lee, J., & Roh, J. (2019). Low power fast transient capacitor-less LDO regulator with high slew-rate class-AB amplifier. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(3), 462–466.

    Google Scholar 

  3. Park, J., Lee, B., & Hong, S. (2020). An output capacitor-less low-dropout regulator with a low-VDD inverting buffer for the mobile application. IEEE Transactions on Industrial Electronics, 67(10), 8931–8935.

    Article  Google Scholar 

  4. Woo, Y. H., Leung, K. N., Zheng, Y., & Guo, J. (2019). Low-dropout regulator with dual cross-coupled current mirrors. International Journal of Circuit Theory and Applications, 47, 1869–1876.

    Article  Google Scholar 

  5. Khan, S. R., & Nadeem, I. (2018). Low quiescent current capacitorless small gain stages LDO with controlled pass transistors. Analog Integrated Circuits and Signal Processing, 94, 323–331.

    Article  Google Scholar 

  6. Desai, C., Mandal, D., Bakkaloglu, B., & Kiaei, S. (2018). A 1.66 mV FOM output cap-Less LDO with current-reused dynamic biasing and 20 ns settling time. IEEE Solid-State Circuits Letters, 1(2), 50–53.

    Article  Google Scholar 

  7. Rincon-Mora, G. A., & Allen, P. E. (1998). A low-voltage, low quiescent current, low drop-out regulator. IEEE Journal of Solid-State Circuits, 33(1), 36–44.

    Article  Google Scholar 

  8. Chava, C. K., & Silva-Martinez, J. (2004). A frequency compensation scheme for LDO voltage regulators. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(6), 1041–1050.

    Article  Google Scholar 

  9. Al-Shyoukh, M., Lee, H., & Perez, R. (2007). A transient-enhanced low-quiescent current low-dropout regulator with buffer impedance attenuation. IEEE Journal of Solid-State Circuits, 42(8), 1732–1742.

    Article  Google Scholar 

  10. Gray, P. R., Hurst, P. J., Lewis, S. H., et al. (2009). Frequency response and stability of feedback amplifiers. Analysis and design of analog integrated circuits (5th ed., pp. 656–664). New York: Wiley.

    Google Scholar 

  11. Zhang, Z., Xu, S., Cheng, X., et al. (2021). An output capacitor-less low-dropout regulator with wide load capacitance and current ranges. International Journal of Circuit Theory and Applications, 49, 853–863.

    Article  Google Scholar 

  12. Chen, C. L., Huang, W. J., & Liu, S. I. (2007). CMOS low dropout regulator with dynamic zero compensation. Electronics Letters, 43(14), 234–235.

    Article  Google Scholar 

  13. Li, Q., Wang, K., & Zhao, J. (2019). A capacitor-less LDO with fast transient response using push-pull buffer. IEEE International Conference on Electron Devices and Solid-State Circuits, 2019, 1–3.

    Google Scholar 

  14. Geng, J., Zhang, L., Zhu, C., & Qian, H. (2016). An oscillator-based CMOS magneto-sensitive biosensor with a low noise and low temperature coefficient LDO regulator. IEEE International Conference on Electron Devices and Solid-State Circuits, 2016, 48–51.

    Google Scholar 

  15. Chang, M., Liu, L., and Mu, J. (2018). A low noise LDO with pre-amplified stage and base-current compensation, 2018 In: 14th IEEE International Conference on Solid-State and Integrated Circuit Technology, pp.1–4.

  16. Choma, J., & Cosand, A. E. (1981). A broad-banded integrated common-collector common-base differential quartet. IEEE Journal of Solid-State Circuits, 16(2), 86–93.

    Article  Google Scholar 

  17. Chong, S. S., & Chan, P. K. (2014). A sub-1 V transient-enhanced output-capacitorless LDO regulator with push–pull composite power transistor. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(11), 2297–2306.

    Article  Google Scholar 

  18. Shruthi, I. T.,Panchal,S.,Uniyal,S., Tantry, D. S. (2021). A high gain, low power operational amplifier utilizing BiCMOS Class AB output stage. 2021 2nd Global Conference for Advancement in Technology, pp.1–3.

  19. Lu, S., Huang, W., & Liu, S. (2005). A fast settling low dropout linear regulator with single Miller compensation capacitor. IEEE Asian Solid-State Circuits Conference, 2005, 153–156.

    Article  Google Scholar 

  20. Fan, X., Mishra, C., & Sanchez-Sinencio, E. (2005). Single Miller capacitor frequency compensation technique for low-power multistage amplifiers. IEEE Journal of Solid-State Circuits, 40(3), 584–592.

    Article  Google Scholar 

  21. Magod, R., Bakkaloglu, B., & Manandhar, S. (2018). A 1.24μA quiescent current NMOS low dropout regulator with integrated low-power oscillator-driven charge-pump and switched-capacitor pole tracking compensation. IEEE Journal of Solid-State Circuits, 53(8), 2356–2367.

    Article  Google Scholar 

  22. Shi, Y., Wang, A., & Cao, J. (2019). A transient-enhanced voltage regulator with stability and power-supply-rejection boosting. Nanoscale Research Letters, 14(1), 368.

    Article  Google Scholar 

  23. Răducan, C., Grăjdeanu, A. T., Plesa, C. S., Neag, M., Negoiţă, A., & Ţopa, M. D. (2020). LDO with improved common gate Class-AB OTA handles any load capacitors and provides fast response to load transients. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(11), 3740–3752.

    Article  Google Scholar 

  24. Jeon, I., Guo, T., & Roh, J. (2021). 300 mA LDO using 0.94 μA IQ with an additional feedback path for buffer turn-off under light-load conditions. IEEE Access, 9, 51784–51792.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (U19A2053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ren, H., Wang, A. et al. A fast transient response low-dropout regulator with all-NPN push–pull buffer in 0.6-μm bipolar process. Analog Integr Circ Sig Process 114, 359–369 (2023). https://doi.org/10.1007/s10470-022-02110-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-022-02110-2

Keywords

Navigation