Skip to main content
Log in

Productivity estimate using regression and artificial neural networks in small familiar areas with agrosilvopastoral systems

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

This study aimed to model the height of trees and volumetric production of eucalypts trees on the agrosilvopastoral systems (AGP) of Zona da Mata Mineira region, Brazil, using artificial neural network (ANN) and regression models to determine the best alternative. The data was obtained from five systems with different spatial arrangements (8 × 3 m, 10 × 3 m, 11 × 3 m, 12 × 3 m, 12 × 2 m, and 12 × 4 m), ages (5.5, 6.5 and 8 years) and genotypes, of which 122 sample trees were scaled. Hypsometric and volumetric models were adjusted considering no stratification or stratification by the AGP, spatial arrangement, and genotype. A multilayer perceptron ANN was trained using resilient propagation and skip layer training algorithms. The stratification variables used in the regression were used in the ANN as categorical variables. To estimate height of trees were used as continuous variables: diameter at breast height (dbh), dominant height (Dh), and age. To estimate volume were used as continuous variables: dbh, total height, and age. The AGPs’s mean annual increment at 5.5, 6.5 and 8 years of age ranged from 21 to 62 m3 ha−1 year−1. ANN was proven to be an efficient methodology for hypsometric and volumetric estimates of eucalypt in AGP in the study region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alcorn PJ, Pyttel P, Bauhus J et al (2007) Effects of initial planting density on branch development in 4-year-old plantation grown Eucalypt pilularis and Eucalyptus cloeziana trees. For Ecol Manag 252:41–51

    Google Scholar 

  • Araújo ACSC, Binoti MLMS, Leite HG, Binoti DHB et al (2016) Artificial Neural Networks with Skip Layer Connections to estimate the volume of forest formations in the state of Minas Gerais. Aust J Basic Appl Sci 10:71–79

    Google Scholar 

  • Assmann E (1970) The principles of forest yield study. Pergamon Press, Oxford p, p 506

    Google Scholar 

  • Avery TE, Burkhart HE (2002) Forest measurements, 5th edn. Waveland Press Inc, Long Grove, IL

    Google Scholar 

  • Barbosa RA, dos Reis GG, Reis MGF et al (2019) Growth, yield and economic analysis of an eucalypt-soybean consortium: effect of the distance between trees within the row. Revista Árvore. https://doi.org/10.1590/1806-90882019000200002

    Article  Google Scholar 

  • Bell S, Zitnick CL, Bala K, Girshick R (2016) Inside-outside net: detecting objects in context with skip pooling and recurrent neural networks. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Las Vegas, NV, USA, pp 2874–2883

  • Binoti MLMS (2012) Emprego de redes neurais artificiais em mensuração e manejo florestal. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Binoti DHB, Binoti MLMDS, Leite HG et al (2012) Descrição da distribuição diamétrica de sistemas agrossilvipastoris utilizando as funções Weibull e Hiperbólica. Revista Árvore 36:349–356

    Google Scholar 

  • Binoti MLMS, Binoti DHB, Leite HG (2013) Aplicação de redes neurais artificiais para estimação da altura de povoamentos equiâneos de eucalipto. Revista Árvore 37:639–645

    Google Scholar 

  • Binoti MLMS, Binoti DHB, Leite HG et al (2014) Redes neurais artificiais para estimação do volume de árvores. Rev Árvore 38:283–288. https://doi.org/10.1590/S0100-67622014000200008

    Article  Google Scholar 

  • Binoti MLMS, Leite HG, Binoti DHB et al (2015) Prognose em nível de povoamento de clones de eucalipto empregando redes neurais artificiais. Cerne 21:97–105. https://doi.org/10.1590/01047760201521011153

    Article  Google Scholar 

  • Binoti DHB, Duarte PJ, Silva MLM da et al (2017) Estimation of height of Eucalyptus trees with neuroevolution of Augmenting Topologies (NEAT). Revista Árvore 41

  • Bishaw Z, Struik PC, Van Gastel AJG (2013) Farmer’s seed sources and seed quality: 2. Seed health. Int J Plant Prod 7:637–657

    Google Scholar 

  • Bisseleua HBD, Fotio D, Yede ADM, Vidal S (2013) Shade tree diversity, cocoa pest damage, yield compensating inputs and farmers’ net returns in West Africa. PLoS ONE 8:e56115

    CAS  PubMed  Google Scholar 

  • Braga AP, Carvalho APLF, Ludemir TB (2000) Redes Neurais Artificiais: Teoria e Aplicações. LTC - Livros Técnicos e Científicos Editora S.A

  • Brüning LZ, Krieger M, Meneses-Pelayo E et al (2018) Land-use heterogeneity by small-scale agriculture promotes amphibian diversity in montane agroforestry systems of northeast Colombia. Agr Ecosyst Environ 264:15–23

    Google Scholar 

  • Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Springer, Berlin

    Google Scholar 

  • Campos JCC, Leite HG (2013) Mensuração Florestal: Perguntas E Respostas. Atual. E Ampl. Viçosa, Mg: Editora Ufv

  • Campos JCC, Ribeiro J, Paula Neto F (1984) Inventário florestal nacional, reflorestamento: Minas Gerais. IBDF, Brasília

    Google Scholar 

  • Campos BPF, da Silva GF, Binoti DHB et al (2016) Predição da altura total de árvores em plantios de diferentes espécies por meio de redes neurais artificiais. Pesquisa Florestal Brasileira 36:375–385

    Google Scholar 

  • Cardoso IM, Guijt I, Franco FS et al (2001) Continual learning for agroforestry system design: university, NGO and farmer partnership in Minas Gerais, Brazil. Agric Syst 69:235–257

    Google Scholar 

  • Che S, Tan X, Xiang C et al (2018) Stand basal area modelling for Chinese fir plantations using an artificial neural network model. J For Res 30:1641–1649

    Google Scholar 

  • Clutter JL, Fortson JC, Pienaar LV et al (1983) Timber management: a quantitative approach. Wiley, London

    Google Scholar 

  • Cordeiro AAC, Coelho SD, Ramos NC, Meira-Neto JAA (2018) Agroforestry systems reduce invasive species richness and diversity in the surroundings of protected areas. Agrofor Syst 92:1495–1505

    Google Scholar 

  • da Silva R, Hakamada R, Bazani J et al (2016) Fertilization response, light use, and growth efficiency in eucalyptus plantations across soil and climate gradients in Brazil. Forests 7:117. https://doi.org/10.3390/f7060117

    Article  Google Scholar 

  • de Freitas ECS, de Oliveira Neto SN, da Fonseca DM et al (2013) Deposição de serapilheira e de nutrientes no solo em sistema agrossilvipastoril com eucalipto e acácia. Revista Árvore 37:409–417

    Google Scholar 

  • Diamantopoulou MJ (2012) Assessing a reliable modeling approach of features of trees through neural network models for sustainable forests. Sustain Comput Inform Syst 2:190–197

    Google Scholar 

  • Diamantopoulou MJ, Milios E (2010) Modelling total volume of dominant pine trees in reforestations via multivariate analysis and artificial neural network models. Biosyst Eng 105:306–315

    Google Scholar 

  • Diamantopoulou MJ, Milios E, Doganos D, Bistinas I (2009) Artificial neural network modeling for reforestation design through the dominant trees bole-volume estimation. Nat Resour Model 22:511–543

    Google Scholar 

  • Diamantopoulou MJ, Özçelik R, Crecente-Campo F et al (2015) Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods. Biosyst Eng 133:33–45. https://doi.org/10.1016/j.biosystemseng.2015.02.013

    Article  Google Scholar 

  • Do Vale R, Couto L, da Silva M et al (2004) Análise da viabilidade econômica de um sistema silvipastoril com eucalipto para a Zona da Mata de Minas Gerais. Agrossilvicultura 1:2

    Google Scholar 

  • Dolácio CJF, Oliveira RS, Nakajima NY et al (2020) Integration of principal component analysis and artificial neural network to modeling productive capacity of eucalypt stands from biophysical attributes. For Ecol Manag 460:117862

    Google Scholar 

  • Dube F, Couto L, da Silva M et al (2002) A simulation model for evaluating technical and economic aspects of an industrial eucalyptus-based agroforestry system in Minas Gerais, Brazil. Agrofor Syst 55:73–80

    Google Scholar 

  • Ferreira AD, Serra AP, Laura VA et al (2017) Influência de arranjos espaciais sobre as características silviculturais de três clones de eucalipto em sistemas de integração lavoura-pecuária-floresta

  • Ferreiro-Domínguez N, Rigueiro-Rodríguez A, Mosquera-Losada MR (2011) Response to sewage sludge fertilisation in a Quercus rubra L. silvopastoral system: soil, plant biodiversity and tree and pasture production. Agric Ecosyst Environ 141:49–57

    Google Scholar 

  • Fontan IC, Reis GG, Reis MG et al (2011) Growth of pruned eucalypt clone in an agroforestry system in southeastern Brazil. Agrofor Syst 83:121

    Google Scholar 

  • Görgens EB, Leite HG, Santos HN et al (2009) Estimação do volume de árvores utilizando redes neurais artificiais. Revista Árvore 33:1141–1147

    Google Scholar 

  • Graybill FA (1976) Theory and application of the linear model, vol 183. Duxbury press, North Scituate, MA

    Google Scholar 

  • Gujarati DN, Porter DC (2011) Econometria Básica-5. Amgh Editora

  • Haykin S (2001) Redes neurais: princípios e prática, 2nd edn. Bookman, Porto Alegre

    Google Scholar 

  • Haykin S (2009) Neural networks and learning machines, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  • Hott MC, De Carvalho LMT, Antunes MAH et al (2016) Vegetative growth of grasslands based on hyper-temporal NDVI data from the Modis sensor. Pesqui Agropecu Bras 51:858–868. https://doi.org/10.1590/S0100-204X2016000700009

    Article  Google Scholar 

  • Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks, pp 4700–4708

  • IBÁ (2019) Relatório Anual. O setor Brasileiro de àrvores. https://iba.org/datafiles/publicacoes/relatorios/iba-relatorioanual2019.pdf

  • Kay S, Graves A, Palma J, Moreno G et al (2019) Agroforestry is paying off—economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst Serv 36:10. https://doi.org/10.1016/j.ecoser.2019.100896

    Article  Google Scholar 

  • Khan GS, Chaudhry AK (2007) Effect of spacing and plant density on the growth of poplar (Populus deltoides) trees under agro-forestry system

  • Kim TJ, Bullock BP, Stape JL (2015) Effects of silvicultural treatments on temporal variations of spatial autocorrelation in Eucalyptus plantations in Brazil. For Ecol Manag 358:90–97. https://doi.org/10.1016/j.foreco.2015.09.004

    Article  Google Scholar 

  • Kruschewsky GC, Macedo RLG, Venturin N, de Oliveira TK (2007) Arranjo estrutural e dinâmica de crescimento de Eucalyptus spp., em sistema agrossilvipastoril no cerrado. Cerne 13:360–367

    Google Scholar 

  • Lacerda F, Miranda I, Kato OR et al (2013) Weed dynamics during the change of a degraded pasture to agroforestry system. Agrofor Syst 87:909–916

    Google Scholar 

  • Lacerda THS, Cabacinha CD, Araújo Júnior CA et al (2017) Artificial neural networks for estimating tree volume in the Brazilian savanna. Cerne 23:483–491

    Google Scholar 

  • Lana ÂMQ, Lana RMQ, Lemes EM et al (2018) Influence of native or exotic trees on soil fertility in decades of silvopastoral system at the Brazilian savannah biome. Agrofor Syst 92:415–424. https://doi.org/10.1007/s10457-016-9998-8

    Article  Google Scholar 

  • Leal FA, Miguel EP, Matricardi EAT et al (2015) Redes neurais artificiais na estimativa de volume em um plantio de eucalipto em função de fotografias hemisféricas e número de árvores. Revista Brasileira de Biometria 33:233–249

    Google Scholar 

  • Leite HG, Nogueira GS, Moreira AM (2006) Efeito do espaçamento e da idade sobre variáveis de povoamentos de Pinus taeda L. Revista Árvore 30:603–612. https://doi.org/10.1590/S0100-67622006000400013

    Article  Google Scholar 

  • Lemaire G, Franzluebbers A, de Carvalho PCF, Dedieu B (2014) Integrated crop–livestock systems: strategies to achieve synergy between agricultural production and environmental quality. Agr Ecosyst Environ 190:4–8. https://doi.org/10.1016/j.agee.2013.08.009

    Article  Google Scholar 

  • Lemos-Junior JM, Souza KR, Guimaraes LE et al (2016) Volumetric models for Eucalyptus grandis × urophylla in a crop-livestock-forest integration (CLFI) system in the Brazilian cerrado. Afr J Agric Res 11:1336–1343

    Google Scholar 

  • Lin Y, Yang H, Ivković M et al (2013) Effect of genotype by spacing interaction on radiata pine genetic parameters for height and diameter growth. For Ecol Manag 304:204–211. https://doi.org/10.1016/j.foreco.2013.05.015

    Article  Google Scholar 

  • Liziniewicz M, Ekö PM, Agestam E (2012) Effect of spacing on 23-year-old lodgepole pine (Pinus contorta Dougl. var. latifolia) in southern Sweden. Scand J For Res 27:361–371

    Google Scholar 

  • Magalhães WM, Macedo RLG, Venturin N et al (2007) Desempenho silvicultural de clones e espécies/procedências de Eucalyptus na região noroeste de Minas Gerais. Cerne 13:368–375

    Google Scholar 

  • Müller MD, Salles TT, Paciullo DSC, Al Et (2014) Equações de altura, volume e afilamento para eucalipto e acácia estabelecidos em sistema silvipastoril. Floresta 44:473–484. https://doi.org/10.5380/rf.v44i3.33149

    Article  Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Springer, Berlin

    Google Scholar 

  • Ogut F, Maltecca C, Whetten R et al (2014) Genetic analysis of diallel progeny test data using factor analytic linear mixed models. For Sci 60:119–127. https://doi.org/10.5849/forsci.12-108

    Article  Google Scholar 

  • Oliveira Neto SN, Reis GG, Reis MGF (2007) Eucalipto: as questões ambientais e seu potencial para Sistemas agrossilvipastoris. In: Fernandes EM, Pacuillo DS, Castro CRT, Müller MD, Arcuri PB, Carneiro JC (eds) Sistemas agrossilvipastoris na América do Sul: desafios e potencialidades. Embrapa Gado de Leite, Juiz de Fora, pp 245–282

    Google Scholar 

  • Oliveira CH, Reis GG, Reis MG et al (2016) Dynamics of eucalypt clones canopy and Brachiaria brizantha production in silvopastoral systems with different spatial arrangements. Agrofor Syst 90:1077–1088

    Google Scholar 

  • Oliveira CC, Alves FV, de Almeida RG et al (2018) Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor Syst 92:1659–1672

    Google Scholar 

  • Özçelik R, Diamantopoulou MJ, Crecente-Campo F, Eler U (2013) Estimating Crimean juniper tree height using nonlinear regression and artificial neural network models. For Ecol Manag 306:52–60

    Google Scholar 

  • Pereira Filho GM, Jacovine LAG, Schettini BLS (2020) Influence of the replanting age on yield and growth of eucalypt clonal stands. Revista Árvore 44

  • Pereira LF, Ferreira CFC, Guimarães RMF (2018) Manejo, qualidade e dinâmica da degradação de pastagens na Mata Atlântica de Minas Gerais-Brasil. Nativa Sinop 6:370–379

    Google Scholar 

  • Peri PL, Hansen NE, Bahamonde HA et al (2016) Silvopastoral systems under native forest in Patagonia Argentina. In: Silvopastoral systems in Southern South America. Springer, Cham, pp 117–168. https://doi.org/10.1007/978-3-319-24109-8_6

  • Plano ABC (2012) Plano Setorial de Mitigação e de Adaptação às Mudanças Climáticas para a Consolidação de uma Economia de Baixa Emissão de Carbono na Agricultura. Brasília

  • Resende RT, Soares AA, Forrester DI et al (2018) Environmental uniformity, site quality and tree competition interact to determine stand productivity of clonal Eucalyptus. For Ecol Manag 410:76–83

    Google Scholar 

  • Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: IEEE international conference on neural networks. IEEE, pp 586–591

  • Rocha SJSS, Torres CMME, Jacovine LAG et al (2018) Artificial neural networks: modeling tree survival and mortality in the Atlantic Forest biome in Brazil. Sci Total Environ 645:655–661

    CAS  PubMed  Google Scholar 

  • Salles TT, Leite HG, de Oliveira Neto SN et al (2012) Modelo de Clutter na modelagem de crescimento e produção de eucalipto em sistemas de integração lavoura-pecuária-floresta. Pesquisa Agropecuária Brasileira 47:253–260

    Google Scholar 

  • Salles TT, Nogueira DA, Beijo LA et al (2019) Bayesian approach and extreme value theory in economic analysis of forestry projects. For Policy Econ 105:64–71. https://doi.org/10.1016/j.forpol.2019.05.021

    Article  Google Scholar 

  • Santi E, Paloscia S, Pettinato S et al (2017) The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas. Remote Sens Environ 200:63–73. https://doi.org/10.1016/j.rse.2017.07.038

    Article  Google Scholar 

  • Schumacher FX, Hall FS (1933) Logarithmic expression of timber-tree volume. J Agric Res 47:719–734

    Google Scholar 

  • Scolforo HF, McTague JP, Burkhart H et al (2019) Eucalyptus growth and yield system: linking individual-tree and stand-level growth models in clonal Eucalypt plantations in Brazil. For Ecol Manag 432:1–16. https://doi.org/10.1016/j.foreco.2018.08.04

    Article  Google Scholar 

  • Silveira DP, Leite HG, Silveira VDP et al (2011) Classification of eucalyptus trees for poles in agroforestry system. Revista Árvore 35:875–882. https://doi.org/10.1590/S0100-67622011000500013

    Article  Google Scholar 

  • Soares FAA, Flôres EL, Cabacinha CD et al (2011) Recursive diameter prediction and volume calculation of eucalyptus trees using Multilayer Perceptron Networks. Comput Electron Agric 78:19–27

    Google Scholar 

  • Soares AAV, Leite HG, Cruz JP, Forrester DI (2017) Development of stand structural heterogeneity and growth dominance in thinned Eucalyptus stands in Brazil. For Ecol Manag 384:339–346. https://doi.org/10.1016/j.foreco.2016.11.010

    Article  Google Scholar 

  • Socha J, Netzel P, Cywicka D (2020) Stem taper approximation by artificial neural network and a regression set models. Forests 11:79. https://doi.org/10.3390/f11010079

    Article  Google Scholar 

  • Somarriba EC, Suárez-Islas A, Calero-Borge W et al (2014) Cocoa–timber agroforestry systems: theobroma cacao–Cordia alliodora in Central America. Agrofor Syst 88:1001–1019

    Google Scholar 

  • Souza HN, de Goede RG, Brussaard L et al (2012) Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agric Ecosyst Environ 146:179–196

    Google Scholar 

  • Souza GSA, Cosenza DN, Araújo ACSC et al (2018) Evaluation of non-linear taper equations for predicting the diameter of eucalyptus trees. Revista Árvore 42:1

    Google Scholar 

  • Srivastava RK, Greff K, Schmidhuber J (2015) Training very deep networks. In: Advances in neural information processing systems, pp 2377–2385

  • Stabile MCC, Azevedo A, Nepstad D (2012) Brazil’s “Low Carbon Agriculture Program”: barriers to implementation. Amazon Environmental Research Institute (IPAM), Belém

    Google Scholar 

  • Tavares Júnior IS, da Rocha JEC, Ebling ÂA et al (2019) Artificial neural networks and linear regression reduce sample intensity to predict the commercial volume of eucalyptus clones. Forests 10:268. https://doi.org/10.3390/f1003026

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. Vienna, Austria, 2011. http://www.R-project.org

  • Tonini H, Magalhães CADS, Faria Neto ALD (2019) Technical thinning age of eucalyptus trees grown in crop-forest integration systems. Pesquisa Agropecuária Brasileira 54

  • Torres CMME, Oliveira AC, Pereira BLC et al (2016) Estimativas da produção e propriedades da madeira de eucalipto em Sistemas Agroflorestais. Sci For Sci 44:137–148. https://doi.org/10.18671/scifor.v44n109.13

    Article  Google Scholar 

  • Trindade C, Jacovine L, Rezende J, Sartorio M (2012) Gestão e controle da qualidade na atividade florestal. Viçosa: Editora UFV 2

  • van Laar A, Akça A (2007) Forest mensuration. Springer, Berlin

    Google Scholar 

  • Villanova PH, Jacovine LAG, Torres CEMM et al (2018) Accumulation of carbon and age of thinning of the tree component in agroforestry systems. Braz J Agric Sci 13:1–16

    Google Scholar 

  • Zhao D, Kane M, Borders BE (2011) Growth responses to planting density and management intensity in loblolly pine plantations in the southeastern USA Lower Coastal Plain. Ann For Sci 68:625–635. https://doi.org/10.1007/s13595-011-0045-7

    Article  Google Scholar 

  • Zianis D, Pantera A, Papadopoulos A, Losada MRM (2019) Bayesian and classical biomass allometries for open grown valonian oaks (Q. ithaburensis subs. macrolepis L.) in a silvopastoral system. Agrofor Syst 93:241–253. https://doi.org/10.1007/s10457-016-0060-7

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq) for funding the research. To Agronomist Rogério Jacinto Gomes, to Professor Lino Roberto Ferreira, coordinators of the Forest Integration Zone-Farming-Livestock-Forest Circuit (Partnership EMATER-MG/Universidade Federal De Viçosa). To farmers for the availability of field demonstration units for data collection. To Amana Obolari, Bruno Schettini, Ricardo Pena, Maria Tereza Nunes, and Cristina Nolasco for their assistance in data collection. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S.S., S. N. O. N. and H. G. L.; Formal analysis, S.S., R. R. O. N., G. S. A. S., S. N. O. N. and H. G. L.; Methodology, S. S.;S.N.O. N. and H. G. L; Writing-original draft S. S.; Writing-review and editing, S. S., S. N. O. N., R. R. O.N., A. E. M. A., H. G. L.; G. S. A. S.

Corresponding author

Correspondence to Simone Silva.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 5 kb)

Supplementary material 2 (TXT 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S., de Oliveira Neto, S.N., Leite, H.G. et al. Productivity estimate using regression and artificial neural networks in small familiar areas with agrosilvopastoral systems. Agroforest Syst 94, 2081–2097 (2020). https://doi.org/10.1007/s10457-020-00526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-020-00526-1

Keywords

Navigation