Skip to main content
Log in

On Cumulative Tsallis Entropies

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

We investigate the cumulative Tsallis entropy, an information measure recently introduced as a cumulative version of the classical Tsallis differential entropy, which is itself a generalization of the Boltzmann-Gibbs statistics. This functional is here considered as a perturbation of the expected mean residual life via some power weight function. This point of view leads to the introduction of the dual cumulative Tsallis entropy and of two families of coherent risk measures generalizing those built on mean residual life. We characterize the finiteness of the cumulative Tsallis entropy in terms of \({\mathcal{L}}_{p}\)-spaces and show how they determine the underlying distribution. The range of the functional is exactly described under various constraints, with optimal bounds improving on all those previously available in the literature. Whereas the maximization of the Tsallis differential entropy gives rise to the classical \(q\)-Gaussian distribution which is a generalization of the Gaussian having a finite range or heavy tails, the maximization of the cumulative Tsallis entropy leads to an analogous perturbation of the Logistic distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alzer, H., Berg, C.: Some classes of completely monotonic functions, II. Ramanujan J. 11, 225–248 (2006)

    Article  MathSciNet  Google Scholar 

  2. Balakrishnan, N., Buono, F., On cumulative entropies in terms of moments of order statistics. Methodol. Comput. Appl. Probab. 24, 345–359 (2022)

    Article  MathSciNet  Google Scholar 

  3. Calì, C., Longobardi, M., Ahmadi, J.: Some properties of cumulative Tsallis entropies. Physica A 486, 1012–1021 (2017)

    Article  MathSciNet  Google Scholar 

  4. Charpentier, A.: Mesures de risque. In: Droesbeke, J.-J., et al. (eds.) Approches Statistiques du Risque, pp. 41–85. Technip, Paris (2014)

    Google Scholar 

  5. Di Crescenzo, A., Longobardi, M.: On cumulative entropies. J. Stat. Plan. Inference 139, 4072–4087 (2009)

    Article  MathSciNet  Google Scholar 

  6. Di Crescenzo, A., Toomaj, A.: Further results on the generalized cumulative entropy. Kybernetika 53(5), 959–982 (2017)

    MathSciNet  Google Scholar 

  7. Hu, T., Chen, O.: On a family of coherent measures of variability. Insur. Math. Econ. 95, 173–182 (2020)

    Article  MathSciNet  Google Scholar 

  8. Kayal, S.: On generalized cumulative residual entropies. Probab. Eng. Inf. Sci. 30, 640–662 (2016)

    Article  Google Scholar 

  9. Kayal, S.: On weighted generalized cumulative residual entropy of order \(n\). Methodol. Comput. Appl. Probab. 20, 487–503 (2018)

    Article  MathSciNet  Google Scholar 

  10. Krakowski, M.: The relevation transform and a generalization of the Gamma distribution function. RAIRO 7(2), 107–120 (1973)

    MathSciNet  Google Scholar 

  11. Lau, K.-S., Prakasa Rao, B.L.S.: Characterization of the exponential distribution by the relevation transform. J. Appl. Probab. 27(3), 726–729 (1990)

    Article  MathSciNet  Google Scholar 

  12. Lin, G.-D.: Recent developments on the moment problem. J. Stat. Distrib. Appl. 4, 5 (2017)

    Article  Google Scholar 

  13. Lomnicki, Z.A.: The standard error of Gini’s mean difference. Ann. Math. Stat. 23(4), 635–637 (1952)

    Article  MathSciNet  Google Scholar 

  14. Luo, Q.-M., Qi, F.: Bounds for the ratio of two gamma functions - from Wendel’s and related inequalities to logarithmically completely monotonic functions. Banach J. Math. Anal. 6(2), 132–158 (2012)

    Article  MathSciNet  Google Scholar 

  15. Melbourne, J., Nayar, P., Roberto, C.: Minimum entropy of a log-concave variable with fixed variance. Available at arXiv:2309.01840

  16. Parsa, H., Tahmasebi, S.: Notes on cumulative entropy as a risk measure. Stoch. Qual. Control 34(1), 1–7 (2019)

    Article  MathSciNet  Google Scholar 

  17. Prato, D., Tsallis, C.: Nonextensive foundation of Lévy distributions. Phys. Rev. E 60, 2398 (1999)

    Article  Google Scholar 

  18. Psarrakos, G., Navarro, J.: Generalized cumulative residual entropy and record values. Metrika 76, 623–640 (2013)

    Article  MathSciNet  Google Scholar 

  19. Psarrakos, G., Toomaj, A.: On the generalized cumulative residual entropy with applications in actuarial science. J. Comput. Appl. Math. 309, 186–199 (2017)

    Article  MathSciNet  Google Scholar 

  20. Rajesh, G., Sunoj, S.M.: Some properties of cumulative Tsallis entropy of order \(\alpha \). Stat. Pap. 60, 933–943 (2019)

    Article  MathSciNet  Google Scholar 

  21. Rao, M.: More on a new concept of entropy and information. J. Theor. Probab. 18, 967–981 (2005)

    Article  MathSciNet  Google Scholar 

  22. Rao, M., Chen, Y., Vemuri, B.C., Wang, F.: Cumulative residual entropy: a new measure of information. IEEE Trans. Inf. Theory 50, 1220–1228 (2004)

    Article  MathSciNet  Google Scholar 

  23. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1953)

    Google Scholar 

  24. Schmeidler, D.: Integral representation without additivity. Proc. Am. Math. Soc. 97(2), 255–261 (1986)

    Article  MathSciNet  Google Scholar 

  25. Shaked, M., Shanthikumar, J.G.: Stochastic Orders and Their Applications. Academic Press, Boston (1994)

    Google Scholar 

  26. Toomaj, A., Sunoj, S.M., Navarro, J.: Some properties of the cumulative residual entropy of coherent and mixed systems. J. Appl. Probab. 54(3), 379–393 (2017)

    Article  MathSciNet  Google Scholar 

  27. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  Google Scholar 

  28. Wang, S., Dhaene, J.: Comonotonicity, correlation order and premium principles. Insur. Math. Econ. 22, 235–242 (1998)

    Article  MathSciNet  Google Scholar 

  29. Zhao, T., Wang, M.: A lower bound for the beta function. Available at arXiv:2305.02754

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose. The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simon, T., Dulac, G. On Cumulative Tsallis Entropies. Acta Appl Math 188, 9 (2023). https://doi.org/10.1007/s10440-023-00620-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10440-023-00620-3

Keywords

Mathematics Subject Classification (2010)

Navigation