Skip to main content
Log in

Fabrication of microfluidic devices for packaging CMOS MEMS impedance sensors

  • Short Communication
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This work presents a polydimethylsiloxane (PDMS) microfluidic device for packaging CMOS MEMS impedance sensors. The wrinkle electrodes are fabricated on PDMS substrates to ensure a connection between the pads of the sensor and the impedance instrument. The PDMS device can tolerate an injection speed of 27.12 ml/h supplied by a pump. The corresponding pressure is 643.35 Pa. The bonding strength of the device is 32.44 g/mm2. In order to demonstrate the feasibility of the device, the short circuit test and impedance measurements for air, de-ionized water, phosphate buffered saline (PBS) at four concentrations (1, 2 × 10−4, 1 × 10−4, and 6.7 × 10−5 M) were performed. The experimental results show that the developed device integrated with a sensor can differentiate various samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GW (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146–149

    Article  Google Scholar 

  • Charati SG, Stern SA (1998) Diffusion of gases in silicone polymers: Molecular dynamics simulations. Macromolecules 31:5529–5535

    Article  Google Scholar 

  • Chong SC, Xie L (2005) Disposable polydimethylsioxane package for bio-microfluidic system. In: Electronic components and technology conference, pp 617–621

  • Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J Micromech Microeng 18:1–4

    Article  Google Scholar 

  • Elwenspoek M, Lammerink TSJ, Miyake R, Fluitman JHJ (1994) Towards integrated microliquid handing systems. J Micromech Microeng 4:227–245

    Article  Google Scholar 

  • Erickson D, Li D (2004) Integrated microfluidic devices. Anal Chim 507:11–26

    Article  Google Scholar 

  • Folch A, Toner M (1998) Cellular micropatterns on biocompatible materials. Biotechnol Prog 14:388–392

    Article  Google Scholar 

  • Ghafar-Zadeh E, Sawan M, Therriault D (2008) A 0.18-μm CMOS capacitive sensor lab-on-chip. Sens Actuators A(141):454–462

    Article  Google Scholar 

  • Gravesen P, Brandebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182

    Article  Google Scholar 

  • Huang R, Suo Z (2002) Wrinkling of a compressed elastic film on a viscous layer. Appl Phys 91:1135–1142

    Article  Google Scholar 

  • Jang LS, Kan WH (2007) Peristaltic piezoelectric micropump system for biomedical applications. Biomed Microdevices 9(4):619–626

    Article  Google Scholar 

  • Jang LS, Wang MH (2007) Microfluidic device for cell capture and impedance measurement. Biomed Microdevices 9:734–742

    Google Scholar 

  • Jang LS, Chao SH, Holl MR, Meldrum DR (2007) Resonant mode-hopping micromixing. Sens Actuators A 138:179–186

    Article  Google Scholar 

  • Kim J, Lee HH (2001) Wave formation by heating in thin metal film on an elastomer. J Polym Sci B Polym Phys 39:1122–1128

    Article  Google Scholar 

  • Lacour SP, Wagner S (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82(15):2404–2406

    Article  Google Scholar 

  • Lee H, Liu Y, Ham D, Westervelt RM (2007) Integrated cell manipulation system—CMOS/microfluidic hybrid. Lab Chip 7:331–337

    Article  Google Scholar 

  • Linder V, Verpoorte E, Thormann W, de Rooij NF, Sigrist H (2001) Surface biopassivation of replicated poly(dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal Chem 73:4181–4189

    Article  Google Scholar 

  • Nguyen NT, Schubert S, Richter S, Dotzel W (1998) Hybrid-assembled micro dosing system using silicon-based micropump/valve and mass flow sensor. Sens Actuators A 69:85–91

    Article  Google Scholar 

  • Niklaus M, Rosset S, Dadras M, Dubois P, Shea H (2008) Microstructure of 5 keV gold-implanted polydimethylsiloxane. Scripta Mater 59:893–896

    Article  Google Scholar 

  • Peng ZC, Ling ZG, Tondra M, Liu CG, Zhang M, Lian K, Goettert J, Hormes J (2006) CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 Films. J Microelectromech Syst 15(3):708–716

    Article  Google Scholar 

  • Saarela V, Franssila S, Tuomikoski S, Marttila S, Ostman P, Sikanen T, Kotiaho T, Kostiainen R (2006) Re-usable multi-inlet PDMS fluidic connector. Sens Actuators B(114):552–557

    Google Scholar 

  • Xu Y, Li B, Li J, Wang E (2008) Ionic liquids supported growth of highly ordered microdroplets induced by fluidic leakage at poly(dimethylsiloxane) interfaces. Anal Chim Acta 625:35–40

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nano Device Laboratories (NDL- P-96-1A-060) and the National Science Council (NSC 96-2221-E-006-289), and made use of shared facilities provided under the Program of Top 100 Universities Advancement funded by the Ministry of Education in Taiwan. The authors would also like to thank the Center for Micro/Nano Science and Technology at National Cheng Kung University and the National Nano Device Laboratories for the access granted to major items of equipment throughout the duration of this study and for their general technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Sheng Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, LS., Wu, CC. & Liu, CF. Fabrication of microfluidic devices for packaging CMOS MEMS impedance sensors. Microfluid Nanofluid 7, 869 (2009). https://doi.org/10.1007/s10404-009-0484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-009-0484-8

Keywords

Navigation