Skip to main content
Log in

Isogeometric Analysis for the Arbitrary AFG Microbeam with Two-Phase Nonlocal Stress-Driven Model

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Scale effects play critical roles in the mechanical responses of microstructures. An isogeometric analysis was developed here to investigate the mechanical responses of an axially functionally graded microbeam. The Euler–Bernoulli beam model was utilized, and size effects in the structure were modeled with a stress-driven two-phase local/nonlocal integral constitution. The governing equation of microstructures was given in an equivalent differential form with two additional constitutive boundary conditions. The framework was verified and utilized to analyze the microbeam’s static and dynamic mechanical responses. The present work showed great potential for modeling various types of functionally graded microstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Guler S. Free vibration analysis of a rotating single edge cracked axially functionally graded beam for flap-wise and chord-wise modes. Eng Struct. 2021;242:112564.

    Google Scholar 

  2. Miyamato Y, Kaysser W, Rabin B, Kawasaki A, Ford R. Functionally graded materials: design, processing and application. Cham: Springer Science & Business Media; 1999.

    Google Scholar 

  3. Şimşek M, Kocatürk T, Akbaş S. Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load. Compos Struct. 2012;94:2358–64.

    Google Scholar 

  4. Shankar R, Ghosh TK, Spontak RJ. Electroactive nanostructured polymers as tunable actuators. Adv Mater. 2007;19:2218–23.

    Google Scholar 

  5. Longo G, Alonso-Sarduy L, Rio LM, Bizzini A, Trampuz A, Notz J, et al. Rapid detection of bacterial resistance to antibiotics using afm cantilevers as nanomechanical sensors. Nat Nanotechnol. 2013;8(7):522–6.

    Google Scholar 

  6. Dantas WG, Gusso A. Analysis of the chaotic dynamics of MEMS/NEMS doubly clamped beam resonators with two-sided electrodes. Int J Bifurc Chaos. 2018;28(10):1850122.

    MathSciNet  Google Scholar 

  7. Xiao W, Huan J, Liu G, Shi H, Dong S. A digitally linear piezoelectric bimorph actuator in open-loop mode. Appl Phys Lett. 2013;102(12):123503.

    Google Scholar 

  8. Holzapfel GA. Nonlinear solid mechanics: a continuum approach for engineering science. Meccanica. 2002;37(4):489–90.

    Google Scholar 

  9. Madani S, Sabour M, Fadaee M. Molecular dynamics simulation of vibrational behavior of annular graphene sheet: identification of nonlocal parameter. J Mol Graph Model. 2018;79:264–72.

    Google Scholar 

  10. Liu Z, Zhang Y, Wang B, Cheng H, Cheng X, Huang Z. DFT study on al-doped defective graphene towards adsorption of elemental mercury. Appl Surf Sci. 2018;427:547–53.

    Google Scholar 

  11. Mindlin R, Tiersten H. Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal. 1962;11(1):415–48.

    MathSciNet  Google Scholar 

  12. Ma H, Gao XL, Reddy J. A microstructure-dependent timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids. 2008;56(12):3379–91.

    MathSciNet  Google Scholar 

  13. Lam DC, Yang F, Chong A, Wang J, Tong P. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51(8):1477–508.

    Google Scholar 

  14. Monaco GT, Fantuzzi N, Fabbrocino F, Luciano R. Hygro-thermal vibrations and buckling of laminated nanoplates via nonlocal strain gradient theory. Compos Struct. 2021;262:113337.

    Google Scholar 

  15. Kröner E. Elasticity theory of materials with long range cohesive forces. Int J Solids Struct. 1967;3(5):731–42.

    Google Scholar 

  16. Eringen AC, Edelen D. On nonlocal elasticity. Int J Eng Sci. 1972;10(3):233–48.

    MathSciNet  Google Scholar 

  17. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54(9):4703–10.

    Google Scholar 

  18. Reddy J, Pang S. Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys. 2008;103(2):023511.

    Google Scholar 

  19. Li C, Guo H, Tian X, He T. Size-dependent thermo-electromechanical responses analysis of multi-layered piezoelectric nanoplates for vibration control. Compos Struct. 2019;225:111112.

    Google Scholar 

  20. Barretta R, Ali Faghidian S, de Sciarra FM, Pinnola FP. Timoshenko nonlocal strain gradient nanobeams: variational consistency, exact solutions and carbon nanotube young moduli. Mech Adv Mater Struct. 2021;28(15):1523–36.

    Google Scholar 

  21. Ghavanloo E, Fazelzadeh S. Nonlocal shell model for predicting axisymmetric vibration of spherical shell-like nanostructures. Mech Adv Mater Struct. 2015;22(7):597–603.

    Google Scholar 

  22. Narendar S, Gupta S, Gopalakrishnan S. Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler–Bernoulli beam theory. Appl Math Model. 2012;36(9):4529–38.

    MathSciNet  Google Scholar 

  23. Jin Q, Ren Y. Dynamic instability mechanism of post-buckled fg nanotubes transporting pulsatile flow: size-dependence and local/global dynamics. Appl Math Model. 2022;111:139–59.

    MathSciNet  Google Scholar 

  24. Jin Q, Ren Y. Coupled resonance of fgm nanotubes transporting super-critical high-speed pulsatile flow under forced vibration: size-dependence and bifurcation topology. Comput Methods Appl Mech Eng. 2023;404:115834.

    MathSciNet  Google Scholar 

  25. Romano G, Barretta R, Diaco M, de Sciarra FM. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci. 2017;1(121):151–6.

    Google Scholar 

  26. Vaccaro MS, Pinnola FP, de Sciarra FM, Barretta R. Limit behavior of eringen’s two-phase elastic beams. Eur J Mech A/Solids. 2021;89:104315.

    Google Scholar 

  27. Tuna M, Kirca M. Exact solution of eringen’s nonlocal integral model for bending of Euler–Bernoulli and timoshenko beams. Int J Eng Sci. 2016;105:80–92.

    MathSciNet  Google Scholar 

  28. Tuna M, Kirca M. Exact solution of eringen’s nonlocal integral model for vibration and buckling of Euler–Bernoulli beam. Int J Eng Sci. 2016;107:54–67.

    Google Scholar 

  29. Eringen AC. Theory of nonlocal elasticity and some applications. Res Mech. 1987;21(4):313–42.

    Google Scholar 

  30. Zhu X, Li L. Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity. Int J Mech Sci. 2017;1(133):639–50.

    Google Scholar 

  31. Romano G, Barretta R, Diaco M. On nonlocal integral models for elastic nano-beams. Int J Mech Sci. 2017;1(131):490–9.

    Google Scholar 

  32. Barretta R, Fazelzadeh S, Feo L, Ghavanloo E, Luciano R. Nonlocal inflected nano-beams: a stress-driven approach of bi-helmholtz type. Compos Struct. 2018;200:239–45.

    Google Scholar 

  33. Barretta R, Faghidian SA, Luciano R, Medaglia C, Penna R. Stress-driven two-phase integral elasticity for torsion of nano-beams. Compos B Eng. 2018;145:62–9.

    Google Scholar 

  34. Apuzzo A, Bartolomeo C, Luciano R, Scorza D. Novel local/nonlocal formulation of the stress-driven model through closed form solution for higher vibrations modes. Compos Struct. 2020;252:112688.

    Google Scholar 

  35. Apuzzo A, Barretta R, Luciano R, de Sciarra FM, Penna R. Free vibrations of Bernoulli–Euler nano-beams by the stress-driven nonlocal integral model. Compos B Eng. 2017;123:105–11.

    Google Scholar 

  36. Barretta R, Čanađija M, de Sciarra FM. Nonlocal integral thermoelasticity: a thermodynamic framework for functionally graded beams. Compos Struct. 2019;225:111104.

    Google Scholar 

  37. Ouakad HM, Valipour A, Żur KK, Sedighi HM, Reddy JN. On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity. Mech Mater. 2020;148:103532.

    Google Scholar 

  38. Bian PL, Qing H. On bending consistency of timoshenko beam using differential and integral nonlocal strain gradient models. ZAMM-J Appl Math Mech/Z f Angewandte Math Mech. 2021;101(8):e202000132.

    MathSciNet  Google Scholar 

  39. Fernández-Sáez J, Zaera R. Vibrations of bernoulli-euler beams using the two-phase nonlocal elasticity theory. Int J Eng Sci. 2017;119:232–48.

    MathSciNet  Google Scholar 

  40. Darban H, Fabbrocino F, Luciano R. Size-dependent linear elastic fracture of nanobeams. Int J Eng Sci. 2020;157:103381.

    MathSciNet  Google Scholar 

  41. Bian PL, Qing H, Gao CF. One-dimensional stress-driven nonlocal integral model with bi-helmholtz kernel: close form solution and consistent size effect. Appl Math Model. 2021;89:400–12.

    MathSciNet  Google Scholar 

  42. Zhang P, Qing H, Gao CF. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos Struct. 2020;245:112362.

    Google Scholar 

  43. Wang Y, Huang K, Zhu X, Lou Z. Exact solutions for the bending of timoshenko beams using eringen’s two-phase nonlocal model. Math Mech Solids. 2019;24(3):559–72.

    MathSciNet  Google Scholar 

  44. Barretta R, Canadija M, Luciano R, de Sciarra FM. On the mechanics of nanobeams on nano-foundations. Int J Eng Sci. 2022;180:103747.

    MathSciNet  Google Scholar 

  45. Simyari M, Hosseini SAA. Analytical solution for nonlocal forced vibration of elliptical nanorod under linear and nonlinear external torque. Appl Math Model. 2023;124:353–66.

    MathSciNet  Google Scholar 

  46. Khaniki HB. Vibration analysis of rotating nanobeam systems using eringen’s two-phase local/nonlocal model. Physica E. 2018;99:310–9.

    Google Scholar 

  47. Naderi A, Behdad S, Fakher M, Hosseini-Hashemi S. Vibration analysis of mass nanosensors with considering the axial-exural coupling based on the two-phase local/nonlocal elasticity. Mech Syst Signal Process. 2020;145:106931.

    Google Scholar 

  48. Naderi A, Fakher M, Hosseini-Hashemi S. On the local/nonlocal piezoelectric nanobeams: vibration, buckling, and energy harvesting. Mech Syst Signal Process. 2021;151:107432.

    Google Scholar 

  49. Farajpour A, Howard CQ, Robertson WSP. On size-dependent mechanics of nanoplates. Int J Eng Sci. 2020;156:103368.

    MathSciNet  Google Scholar 

  50. Sahmani S, Fattahi A, Ahmed N. Analytical treatment on the nonlocal strain gradient vibrational response of postbuckled functionally graded porous micro-/nanoplates reinforced with GPL. Eng Comput. 2020;36:1559–78.

    Google Scholar 

  51. Yan X, Li Y. Size-dependent buckling behaviors of a rotating nanobeam using the integral form of Eringen’s nonlocal theory. Mech Adv Mater Struct. 2023;18:1–7.

    Google Scholar 

  52. Norouzzadeh A, Ansari R. Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E. 2017;88:194–200.

    Google Scholar 

  53. Eptaimeros K, Koutsoumaris CC, Tsamasphyros G. Nonlocal integral approach to the dynamical response of nanobeams. Int J Mech Sci. 2016;115:68–80.

    Google Scholar 

  54. Taghizadeh M, Ovesy H, Ghannadpour S. Beam buckling analysis by nonlocal integral elasticity finite element method. Int J Struct Stab Dyn. 2016;16(06):1550015.

    MathSciNet  Google Scholar 

  55. Merzouki T, Houari MSA, Haboussi M, Bessaim A, Ganapathi M. Nonlocal strain gradient finite element analysis of nanobeams using two-variable trigonometric shear deformation theory. Eng Comput. 2022;38(Suppl 1):647–65.

    Google Scholar 

  56. Fakher M, Hosseini-Hashemi S. Vibration of two-phase local/nonlocal Timoshenko nanobeams with an efficient shear-locking-free finite-element model and exact solution. Eng Comput. 2022;1:1–5.

    Google Scholar 

  57. Limkatanyu S, Sae-Long W, Sedighi HM. Flexibility-based stress-driven nonlocal frame element: formulation and applications. Eng Comput. 2023;39(1):399–417.

    Google Scholar 

  58. Russillo AF, Failla G. Wave propagation in stress-driven nonlocal Rayleigh beam lattices. Int J Mech Sci. 2022;215:106901.

    Google Scholar 

  59. Bian PL, Qing H. Structural analysis of nonlocal nanobeam via fem using equivalent nonlocal differential model. Eng Comput. 2023;39(4):2565–81.

    Google Scholar 

  60. Bian PL, Qing H, Yu T. A new finite element method framework for axially functionally-graded nanobeam with stress-driven two-phase nonlocal integral model. Compos Struct. 2022;295:115769.

    Google Scholar 

  61. Hughes TJ, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 2005;194(39–41):4135–95.

    MathSciNet  Google Scholar 

  62. Borković A, Kovačević S, Radenković G, Milovanović S, Guzijan-Dilber M. Rotation-free isogeometric analysis of an arbitrarily curved plane Bernoulli–Euler beam. Comput Methods Appl Mech Eng. 2018;1(334):238–67.

    MathSciNet  Google Scholar 

  63. Phung-Van P, Thanh CL, Nguyen-Xuan H, Abdel-Wahab M. Nonlinear transient isogeometric analysis of FG-CNTRC nanoplates in thermal environments. Compos Struct. 2018;201:882–92.

    Google Scholar 

  64. Norouzzadeh A, Ansari R, Darvizeh M. Large elastic deformation of micromorphic shells. Part I: variational formulation. Math Mech Solids. 2019;24(12):3920–56.

    MathSciNet  Google Scholar 

  65. Kruse R, Nguyen-Thanh N, Wriggers P, De Lorenzis L. Isogeometric frictionless contact analysis with the third medium method. Comput Mech. 2018;62(5):1009–21.

    MathSciNet  Google Scholar 

  66. Li Y, Yu T, Natarajan S, Bui TQ. A dynamic description of material brittle failure using a hybrid phase-field model enhanced by adaptive isogeometric analysis. Eur J Mech A/Solids. 2023;97:104783.

    MathSciNet  Google Scholar 

  67. Gao J, Gao L, Luo Z, Li P. Isogeometric topology optimization for continuum structures using density distribution function. Int J Numer Meth Eng. 2019;119(10):991–1017.

    MathSciNet  Google Scholar 

  68. Gao J, Xiao M, Zhang Y, Gao L. A comprehensive review of isogeometric topology optimization: methods, applications and prospects. Chin J Mech Eng. 2020;33(1):1–14.

    Google Scholar 

  69. Yu T, Hu H, Zhang J, Bui TQ. Isogeometric analysis of size-dependent effects for functionally graded microbeams by a non-classical quasi-3D theory. Thin-Walled Struct. 2019;138:1–14.

    Google Scholar 

  70. Nguyen HX, Nguyen TN. A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput Methods Appl Mech Eng. 2017;313:904–40.

    MathSciNet  Google Scholar 

  71. Liu S, Yu T, Yin S, Bui TQ, et al. Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput Struct. 2019;212:173–87.

    Google Scholar 

  72. Niiranen J, Balobanov V, Kiendl J, Hosseini S. Variational formulations, model comparisons and numerical methods for Euler–Bernoulli micro-and nano-beam models. Math Mech Solids. 2019;24:312–35.

    MathSciNet  Google Scholar 

  73. Balobanov V, Niiranen J. Locking-free variational formulations and isogeometric analysis for the timoshenko beam models of strain gradient and classical elasticity. Comput Methods Appl Mech Eng. 2018;339:137–59.

    MathSciNet  Google Scholar 

  74. Yin S, Deng Y, Yu T, Gu S, Zhang G. Isogeometric analysis for nonclassical Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Appl Math Model. 2021;89:470–85.

    MathSciNet  Google Scholar 

  75. Bacciocchi M, Fantuzzi N, Luciano R, Tarantino AM. Linear eigenvalue analysis of laminated thin plates including the strain gradient effect by means of conforming and nonconforming rectangular finite elements. Comput Struct. 2021;257:106676.

    Google Scholar 

  76. Thai S, Thai HT, Vo TP, Patel VI. Size-dependant behaviour of functionally graded microplates based on the modified strain gradient elasticity theory and isogeometric analysis. Comput Struct. 2017;190:219–41.

    Google Scholar 

  77. Nguyen HX, Atroshchenko E, Nguyen-Xuan H, Vo TP. Geometrically nonlinear isogeometric analysis of functionally graded microplates with the modified couple stress theory. Comput Struct. 2017;193:110–27.

    Google Scholar 

  78. Farzam A, Hassani B. A new effcient shear deformation theory for FG plates with in-plane and through-thickness stiffness variations using isogeometric approach. Mech Adv Mater Struct. 2019;26:512–25.

    Google Scholar 

  79. Rahmani F, Kamgar R, Rahgozar R. Analysis of metallic and functionally graded beams using isogeometric approach and carrera unied formulation. Mech Adv Mater Struct. 2023;30(4):894–911.

    Google Scholar 

  80. Gere JM, Goodno BJ. Mechanics of materials. Cengage learning; 2012.

    Google Scholar 

  81. Zhang P, Qing H. Closed-form solution in bi-helmholtz kernel based two-phase nonlocal integral models for functionally graded timoshenko beams. Compos Struct. 2021;265:113770.

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the present work from the National Natural Science Foundation of China (12172169, 12202135, and 12272724). The work is also supported by the Fundamental Research Funds for the Central Universities from Hohai University (423142).

Author information

Authors and Affiliations

Authors

Contributions

PB involved in methodology, software, investigation, writing-original draft. ZL took part in methodology, software. HQ involved in review & editing, supervision, funding. TY took part in review & editing, supervision.

Corresponding author

Correspondence to Hai Qing.

Ethics declarations

Conflict of interest

The corresponding author declares on behalf of all authors that there are no conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, PL., Liu, Z., Qing, H. et al. Isogeometric Analysis for the Arbitrary AFG Microbeam with Two-Phase Nonlocal Stress-Driven Model. Acta Mech. Solida Sin. 37, 341–360 (2024). https://doi.org/10.1007/s10338-024-00467-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-024-00467-7

Keywords

Navigation