Skip to main content
Log in

Quality Control of Xiebai San Standard Decoction Assisted by Network Pharmacology Strategy

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Xiebai San (XBS) is a classical herbal prescription which has been used for the treatment of infantile cough and asthma for several hundred years. In this study, 39 compounds in XBS standard decoction were identified by HPLC–ESI–TOF system. Network pharmacology strategy was adopted to explore the relationship of chemicals, target genes and pathways, mulberroside A, kukoamine B and glycyrrhizic acid were chosen as quality markers in XBS standard decoction. An ultra-high-performance liquid chromatography (UHPLC) method was established to simultaneously determine these three compounds on the Waters CORTECS T3 column (150 mm × 3 mm, 1.6 µm) at 0.45 mL min−1 with 0.1% (v/v) TFA (A) and acetonitrile (B) as the mobile phase. The developed method was validated with satisfactory parameters: specificity, linearity, precision, accuracy, stability and ruggedness. The method was then applied to analyze ten batches of XBS standard decoction and the initial quality control standard of XBS standard decoction was established.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yeh CC, Lin CC, Wang SD, Chen YS, Su BH, Kao ST (2006) Protective and anti-inflammatory effect of a traditional Chinese medicine, Xia-Bai-San, by modulating lung local cytokine in a murine model of acute lung injury. Int Immunopharmacol 6(9):1506–1514

    Article  CAS  Google Scholar 

  2. Lee K-H, Yeh M-H, Kao S-T, Hung C-M, Chen B-C, Liu C-J, Yeh C-C (2009) Xia-Bai-San inhibits lipopolysaccharide-induced activation of intercellular adhesion molecule-1 and nuclear factor-kappa B in human lung cells. J Ethnopharmacol 124(3):530–538

    Article  Google Scholar 

  3. Wang S, Deng Z, Zhang J, Jiao M, Zhang G, Shi J, Cheng J, Liu A (2018) Preparation and quality standard of standard decoction of Phellodendri Chinensis Cortex pieces. China J Chin Materia Med 43(5):873–878

    Google Scholar 

  4. Piao SJ, Chen LX, Kang N, Qiu F (2011) Simultaneous determination of five characteristic stilbene glycosides in root bark of Morus albus L. (Cortex Mori) using high-performance liquid chromatography. Phytochem Anal 22(3):230–235

    Article  CAS  Google Scholar 

  5. Li YY, Di R, Hsu WL, Huang YQ, Cheung HY (2017) Quality control of Lycium chinense and Lycium barbarum cortex (Digupi) by HPLC using kukoamines as markers. Chin Med 12:4

    Article  Google Scholar 

  6. Wang YN, Liu MF, Hou WZ, Xu RM, Gao J, Lu AQ, Xie MP, Li L, Zhang JJ, Peng Y, Ma LL, Wang XL, Shi JG, Wang SJ (2017) Bioactive benzofuran derivatives from Cortex Mori Radicis, and their neuroprotective and analgesic activities mediated by mGluR1. Molecules 22(2):236

    Article  Google Scholar 

  7. Lee MS, Park WS, Kim YH, Kwon SH, Jang YJ, Han D, Morita K, Her S (2013) Antidepressant-like effects of Cortex Mori Radicis extract via bidirectional phosphorylation of glucocorticoid receptors in the hippocampus. Behav Brain Res 236(1):56–61

    Article  Google Scholar 

  8. Kim HJ, Lee HJ, Jeong SJ, Lee HJ, Kim SH, Park EJ (2011) Cortex Mori Radicis extract exerts antiasthmatic effects via enhancement of CD4(+)CD25(+)Foxp3(+) regulatory T cells and inhibition of Th2 cytokines in a mouse asthma model. J Ethnopharmacol 138(1):40–46

    Article  Google Scholar 

  9. Yang Y, An Y, Wang W, Du N, Zhang J, Feng Z, Jiang J, Zhang P (2017) Nine compounds from the root bark of Lycium chinense and their anti-inflammatory activities. Acta Pharm Sin B 7(4):491–495

    Article  Google Scholar 

  10. Li Y-Y, Hu S, Huang Y-Q, Han Y, Cheung H-Y (2015) Preventing H2O2-induced toxicity in primary cerebellar granule neurons via activating the PI3-K/Akt/GSK3β pathway by kukoamine from Lycii Cortex. J Funct Foods 17:709–721

    Article  CAS  Google Scholar 

  11. Potterat O (2010) Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Med 76(1):7–19. https://doi.org/10.1055/s-0029-1186218

    Article  CAS  PubMed  Google Scholar 

  12. He Y, Ci X, Xie Y, Yi X, Zeng Y, Li Y, Liu C (2019) Potential detoxification effect of active ingredients in liquorice by upregulating efflux transporter. Phytomedicine 56:175–182

    Article  CAS  Google Scholar 

  13. Bai M, Yao G-D, Ren Q, Li Q, Liu Q-B, Zhang Y, Wang X-B, Huang X-X, Song S-J (2018) Triterpenoid saponins and flavonoids from licorice residues with anti-inflammatory activity. Ind Crops Prod 125:50–58

    Article  CAS  Google Scholar 

  14. Lee AY, Park W, Kang TW, Cha MH, Chun JM (2018) Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. J Ethnopharmacol 221:151–159

    Article  Google Scholar 

  15. Chen L, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, Ye G, Chai Y (2018) Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. J Ethnopharmacol 219:359–368

    Article  Google Scholar 

  16. Yu S, Liu H, Li K, Qin Z, Qin X, Zhu P, Li Z (2019) Rapid characterization of the absorbed constituents in rat serum after oral administration and action mechanism of Naozhenning granule using LC–MS and network pharmacology. J Pharm Biomed Anal 166:281–290

    Article  CAS  Google Scholar 

  17. Cai FF, Bian YQ, Wu R, Sun Y, Chen XL, Yang MD, Zhang QR, Hu Y, Sun MY, Su SB (2019) Yinchenhao decoction suppresses rat liver fibrosis involved in an apoptosis regulation mechanism based on network pharmacology and transcriptomic analysis. Biomed Pharmacother 114:108863

    Article  CAS  Google Scholar 

  18. Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    Article  CAS  Google Scholar 

  19. Zhou W, Chen Z, Li W, Wang Y, Li X, Yu H, Ran P, Liu Z (2019) Systems pharmacology uncovers the mechanisms of anti-asthma herbal medicine intervention (ASHMI) for the prevention of asthma. J Funct Foods 52:611–619

    Article  CAS  Google Scholar 

  20. Li Y, Huang L, Zeng X, Zhong G, Ying M, Huang M, Bi H (2014) Down-regulation of P-gp expression and function after Mulberroside A treatment: potential role of protein kinase C and NF-kappa B. Chem Biol Interact 213:44–50

    Article  CAS  Google Scholar 

  21. Liu X, Zheng X, Wang N, Cao H, Lu Y, Long Y, Zhao K, Zhou H, Zheng J (2011) Kukoamine B, a novel dual inhibitor of LPS and CpG DNA, is a potential candidate for sepsis treatment. Br J Pharmacol 162(6):1274–1290

    Article  CAS  Google Scholar 

  22. Jing W, Yan R, Wang Y (2015) A practical strategy for chemical profiling of herbal medicines using ultra-high performance liquid chromatography coupled with hybrid triple quadrupole-linear ion trap mass spectrometry: a case study of Mori Cortex. Anal Methods 7(2):443–457

    Article  CAS  Google Scholar 

  23. Zhang JX, Guan SH, Yang M, Feng RH, Wang Y, Zhang YB, Chen X, Chen XH, Bi KS, Guo DA (2013) Simultaneous determination of 24 constituents in Cortex Lycii using high-performance liquid chromatography-triple quadrupole mass spectrometry. J Pharm Biomed Anal 77:63–70

    Article  CAS  Google Scholar 

  24. Li YY, Wang H, Zhao C, Huang YQ, Tang X, Cheung HY (2015) Identification and characterization of kukoamine metabolites by multiple ion monitoring triggered enhanced product ion scan method with a triple-quadruple linear ion trap mass spectrometer. J Agric Food Chem 63(50):10785–10790

    Article  CAS  Google Scholar 

  25. Voynikov Y, Zheleva-Dimitrova D, Gevrenova R, Lozanov V, Zaharieva MM, Tsvetkova I, Najdenski H, Yagi S, Almoulah NF, Momekov G (2016) Hydroxycinnamic acid amide profile of Solanum schimperianum Hochst by UPLC-HRMS. Int J Mass Spectrom 408:42–50

    Article  CAS  Google Scholar 

  26. Zhang JX, Guan SH, Sun JH, Liu T, Chen P, Feng RH, Chen X, Wu WY, Yang M, Guo DA (2015) Characterization and profiling of phenolic amides from Cortex Lycii by ultra-high performance liquid chromatography coupled with LTQ-Qrbitrap mass spectrometry. Anal Bioanal Chem 407:581–595

    Article  CAS  Google Scholar 

  27. Zhang Y, Wang C, Yang F, Yang Z, Wang F, Sun G (2018) UHPLC-ESI-Q-TOF-MS/MS analysis, antioxidant activity combined fingerprints for quality consistency evaluation of compound liquorice tablets. RSC Adv 8(49):27661–27673

    Article  CAS  Google Scholar 

  28. Keslacy S, Tliba O, Baidouri H, Amrani Y (2007) Inhibition of tumor necrosis factor-alpha-inducible inflammatory genes by interferon-gamma is associated with altered nuclear factor-kappaB transactivation and enhanced histone deacetylase activity. Mol Pharmacol 71(2):609–618

    Article  CAS  Google Scholar 

  29. Xie LW, Atanasov AG, Guo DA, Malainer C, Zhang JX, Zehl M, Guan SH, Heiss EH, Urban E, Dirsch VM, Kopp B (2014) Activity-guided isolation of NF-kappaB inhibitors and PPARgamma agonists from the root bark of Lycium chinense Miller. J Ethnopharmacol 152(3):470–477

    Article  CAS  Google Scholar 

  30. Whitehead GS, Thomas SY, Shalaby KH, Nakano K, Moran TP, Ward JM, Flake GP, Nakano H, Cook DN (2017) TNF is required for TLR ligand-mediated but not protease-mediated allergic airway inflammation. J Clin Invest 127(9):3313–3326

    Article  Google Scholar 

  31. Zhao J, Ma SC, Li SP (2018) Advanced strategies for quality control of Chinese medicines. J Pharm Biomed Anal 147:473–478

    Article  CAS  Google Scholar 

  32. Li Y-Y, Di R, Baibado JT, Cheng Y-S, Huang Y-Q, Sun H, Cheung H-Y (2014) Identification of kukoamines as the novel markers for quality assessment of Lycii Cortex. Food Res Int 55:373–380

    Article  CAS  Google Scholar 

  33. Akutagawa K, Fujita T, Ouhara K, Takemura T, Tari M, Kajiya M, Matsuda S, Kuramitsu S, Mizuno N, Shiba H, Kurihara H (2019) Glycyrrhizic acid suppresses inflammation and reduces the increased glucose levels induced by the combination of Porphyromonas gulae and ligature placement in diabetic model mice. Int Immunopharmacol 68:30–38

    Article  CAS  Google Scholar 

  34. Zhao Y, Jia R, Qiao Y, Wang D (2016) Glycyrrhizic acid, active component from Glycyrrhizae radix, prevents toxicity of graphene oxide by influencing functions of microRNAs in nematode Caenorhabditis elegans. Nanomedicine 12(3):735–744

    Article  CAS  Google Scholar 

  35. Bernela M, Ahuja M, Thakur R (2016) Enhancement of anti-inflammatory activity of glycyrrhizic acid by encapsulation in chitosan-katira gum nanoparticles. Eur J Pharm Biopharm 105:141–147

    Article  CAS  Google Scholar 

  36. He L, Shi X, Seto SW, Dennis C, Wang H, Zhang S, Chen W, Wang J (2019) Using 3D-UPLC-DAD and a new method-verification by adding mixture standard compounds to determine the fingerprint and eight active components of Naoluoxintong decoction. J Pharm Biomed Anal 169:60–69

    Article  CAS  Google Scholar 

  37. Hussain A, Alam P, Siddiqui NA, Alajmi MF, Rehman MT, Kalam MA, Al-Rehaily AJ (2018) Development and validation of UPLC-PDA method for concurrent analysis of bergenin and menisdaurin in aerial parts of Flueggea virosa (Roxb. ex Willd.). Saudi Pharm J 26(7):970–976

    Article  Google Scholar 

  38. He Y, Cook KS, Littlepage E, Cundy J, Mangalathillam R, Jones MT (2015) Ion-pair reversed phase liquid chromatography with ultraviolet detection for analysis of ultraviolet transparent cations. J Chromatogr A 1408:261–266

    Article  CAS  Google Scholar 

  39. Tarafder A, Aumann L, Morbidelli M (2010) The role of ion-pairing in peak deformations in overloaded reversed-phase chromatography of peptides. J Chromatogr A 1217(45):7065–7073

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Grant of National Natural Science Funds of China (Grant No. 81973464/H2803), National Key R&D Program of China (Grant No. U1508220), National Natural Science Foundation of China (Grant No.U1508220), Guidance Plan of Natural Science Foundation of Liaoning in China (2019-ZD-0463) and supported by Liaoning Distinguished Professor Project for Qing Li (2017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchuan Bi or Yan Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by authors. The authors confirm compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 939 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Sun, X., Sui, W. et al. Quality Control of Xiebai San Standard Decoction Assisted by Network Pharmacology Strategy. Chromatographia 83, 873–884 (2020). https://doi.org/10.1007/s10337-020-03897-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03897-w

Keywords

Navigation