Skip to main content
Log in

Topological Stability and Entropy for Certain Set-valued Maps

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, the dynamics (including shadowing property, expansiveness, topological stability and entropy) of several types of upper semi-continuous set-valued maps are mainly considered from differentiable dynamical systems points of view. It is shown that (1) if f is a hyperbolic endomor-phism then for each ε> 0 there exists a C1-neighborhood \({\cal U}\) of f such that the induced set-valued map \({F_{f,{\cal U}}}\) has the ε-shadowing property, and moreover, if f is an expanding endomorphism then there exists a C1-neighborhood \({\cal U}\) of f such that the induced set-valued map \({F_{f,{\cal U}}}\) has the Lipschitz shadowing property; (2) when a set-valued map F is generated by finite expanding endomorphisms, it has the shadowing property, and moreover, if the collection of the generators has no coincidence point then F is expansive and hence is topologically stable; (3) if f is an expanding endomorphism then for each ε> 0 there exists a C1-neighborhood \({\cal U}\) of f such that \(h({F_{f,{\cal U}}},\varepsilon) = h(f)\) (4) when F is generated by finite expanding endomorphisms with no coincidence point, the entropy formula of F is given. Furthermore, the dynamics of the set-valued maps based on discontinuous maps on the interval are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akin, E.: Simplicial dynamical systems. Mem. Amer. Math. Soc., 140(667), x+197 pp. (1999)

    Google Scholar 

  2. Anosov, D. V.: On a class of invariant sets of smooth dynamical systems. In: Proc. 5th Int. Conf. Nonl. Oscill., Kiev, 2, 39–45 (1970)

  3. Aubin, J., Frankowska, H.: Set-valued Analysis, Birkhauser Boston, Inc., Boston, MA, 1990

    Google Scholar 

  4. Aubin, J., Frankowska, H., Lasota, A.: Poincaré’s recurrence theorem for set-valued dynamical systems. Ann. Polon. Math., 54, 85–91 (1991)

    Article  MathSciNet  Google Scholar 

  5. Alvin, L., Kelly, J.: Topological entropy of Markov set-valued functions. Ergodic Theory Dynam. Systems, 41(2), 321–337 (2021)

    Article  MathSciNet  Google Scholar 

  6. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math., 470, Springer, Berlin, 1975

    Google Scholar 

  7. Brown, A., Hertz, F. R., Wang, Z.: Smooth ergodic theory of \({\mathbb{Z}^d}\)-actions. arXiv:1610.09997 (2016)

  8. Cheng, W.-C., Newhouse, S.: Pre-image entropy. Ergodic Theory Dynam. Systems, 25, 1091–1113 (2005)

    Article  MathSciNet  Google Scholar 

  9. Einsiedler, M., Lind, D.: Algebraic \({\mathbb{Z}^d}\)-actions on entropy rank one. Trans. Amer. Math. Soc., 356(5), 179–1831 (2004)

    Article  MathSciNet  Google Scholar 

  10. Fiebig, D., Fiebig, U., Nitecki, Z.: Entropy and preimage sets. Ergodic Theory Dynam. Systems, 23, 1785–1806 (2003)

    Article  MathSciNet  Google Scholar 

  11. Friedland, S.: Entropy of graphs, semi-groups and groups. In: Ergodic Theory of \({\mathbb{Z}^d}\)-actions, Pollicott, M., Schmidt, K. (eds.), London Math. Soc. Lecture Note Ser., 228, Cambridge Univ. Press, Cambridge, 319–343 (1996)

    Google Scholar 

  12. Geller, W., Pollicott, M.: An entropy for \({\mathbb{Z}^2}\)-actions with finite entropy generators. Fund. Math., 157, 209–220 (1998)

    Article  MathSciNet  Google Scholar 

  13. Hu, H.: Some ergodic properties of commuting diffeomorphisms. Ergodic Theory Dynam. Systems, 13, 73–100 (1993)

    Article  MathSciNet  Google Scholar 

  14. Hurley, M.: On topological entropy of maps. Ergodic Theory Dynam. Systems, 15, 557–568 (1995)

    Article  MathSciNet  Google Scholar 

  15. Ingram, W., Mahavier, W.: Inverse limits of upper semi-continuous set valued functions. Houston J. Math., 32(1), 119–130 (2006)

    MathSciNet  Google Scholar 

  16. Kelly, J., Tennant, T.: Topological entropy of set-valued functions. Houston J. Math., 43(1), 263–282 (2017)

    MathSciNet  Google Scholar 

  17. Kennedy, J., Nall, V.: Dynamical properties of shift maps on inverse limits with a set valued function. Ergodic Theory Dynam. Systems, 38(4), 1499–1524 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kifer, Y.: Ergodic Theory of Random Transformations, Birkhäuser, Boston, 1986

    Book  Google Scholar 

  19. Liu, P., Qian, M.: Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Math., 1606, Springer, New York, 1995

    Google Scholar 

  20. Pacifico, M., Vieitez, J.: Expansiveness, Lyapunov exponents and entropy for set valued maps. arXiv: 1709.05739 (2017)

  21. Pilyugin, S.: Shadowing in Dynamical Systems, Lecture Notes in Math., 1706, Springer, Berlin, 1999

    Google Scholar 

  22. Pilyugin, S., Rieger, J.: Shadowing and inverse shadowing in set-valued dynamical systems: Contractive case. Topol. Methods Nonlinear Anal., 32(1), 139–149 (2008)

    MathSciNet  Google Scholar 

  23. Pilyugin, S., Rieger, J.: Shadowing and inverse shadowing in set-valued dynamical systems: Hyperbolic case. Topol. Methods Nonlinear Anal., 32(1), 151–164 (2008)

    MathSciNet  Google Scholar 

  24. Qian, M., Xie, J., Zhu, S.: Smooth ergodic theory for endomorphisms, Lecture Notes in Math., 1978. Springer-Verlag, Berlin, 2009

    Book  Google Scholar 

  25. Metzger, R., Morales, C. A., Thieullen, P.: Topological stability in set-valued dynamics. Discrete Contin. Dyn. Syst. Ser. B, 22(5), 1965–1975 (2017)

    MathSciNet  Google Scholar 

  26. Miller, W.: Frobenius–Perron operators and approximation of invariant measures for set-valued dynamical systems. Set-Valued Anal., 3, 181–194 (1995)

    Article  MathSciNet  Google Scholar 

  27. Miller, W., Akin, E.: Invariant measures for set-valued dynamical systems. Trans. Amer. Math. Soc., 351, 1203–1225 (1999)

    Article  MathSciNet  Google Scholar 

  28. Nitecki, Z., Przytycki, F.: Preimage entropy for mappings. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 9, 1815–1843 (1999)

    Article  MathSciNet  Google Scholar 

  29. Wen, L.: Differentiable Dynamical Systems, Graduate Studies in Math., {ni173}, Amer. Math. Soc., Providence, RI, 2016

    Book  Google Scholar 

  30. Wang, X., Wu, W., Zhu, Y.: Local entropy via preimage structure. J. Differential Equations, 317, 639–684 (2022)

    Article  MathSciNet  Google Scholar 

  31. Wu, W., Zhu, Y.: On preimage entropy, folding entropy and stable entropy. Ergodic Theory Dynam. Systems, 41(4), 1217–1249 (2021)

    Article  MathSciNet  Google Scholar 

  32. Wu, W., Zhu, Y.: Entropy via preimage structure. Adv. Math., 406(11), 108483, 45 pp (2022)

    Article  MathSciNet  Google Scholar 

  33. Zhu, Y.: Entropy formula of random \({\mathbb{Z}^k}\)-actions. Trans. Amer. Math. Soc., 369(7), 4517–4544 (2017)

    Article  MathSciNet  Google Scholar 

  34. Zhu, Y., Zhang, J., He, L.: Shadowing and inverse shadowing for C1 endomorphisms. Acta Math. Sin., Engl. Ser., 22(5), 1321–1328 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jun Zhu.

Ethics declarations

Conflict of Interest The authors declare no conflict of interest.

Additional information

Supported by NSFC (Grant Nos. 11771118, 12171400)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhu, Y.J. Topological Stability and Entropy for Certain Set-valued Maps. Acta. Math. Sin.-English Ser. 40, 962–984 (2024). https://doi.org/10.1007/s10114-023-1643-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-023-1643-7

Keywords

MR(2010) Subject Classification

Navigation