Skip to main content

Advertisement

Log in

Lymphocyte-to-monocyte ratio on day 7 is associated with outcomes in acute ischemic stroke

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The main features of stroke-induced immunosuppression are lymphopenia and deactivation of monocytes in peripheral blood. We hypothesized that lymphocyte-to-monocyte ratio (LMR) in peripheral blood may represent the degree of stroke-induced immunosuppression. To prove this hypothesis, we evaluated whether LMR is associated with risk of post-stroke infection and clinical outcome at 3 months in patients with acute ischemic stroke. We selected patients with stroke in anterior circulation within 24 h from onset. Peripheral blood sampling for differential blood count was performed on days 1 and 7. The LMRs on days 1 and 7 were analyzed to determine associations with excellent outcomes (modified Rankin Scale of score 0–1 at 3 months). One hundred and two patients were included. The initial National Institutes of Health Stroke Scale score (adjusted odd ratio [OR] 0.89; 95% confidence interval [CI], 0.83–0.95; P = 0.001) and LMR on day 7 (adjusted OR 1.49; 95% CI, 1.09–2.02; P = 0.011) were associated with excellent outcomes. LMRs on day 1 were significantly lower in stroke patients with pneumonia (P = 0.007) and pneumonia or urinary tract infection (P = 0.012) than those without infections. LMRs on day 7 were also significantly lower in stroke patients with infection (P = 0.005 in pneumonia, P = 0.003 in urinary tract infection, and P < 0.001 in pneumonia or urinary tract infection) than those without infections. Lower LMRs on day 7 are associated with worse outcomes at 3 months after stroke onset. LMR may be a useful marker for assessing the stroke-induced immunosuppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vernino S, Brown RD, Sejvar JJ, Sicks JD, Petty GW, O’Fallon WM (2003) Cause-specific mortality after first cerebral infarction: a population-based study. Stroke 34:1828–1832

    Article  PubMed  Google Scholar 

  2. Marik PE (2001) Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 344:665–671

    Article  CAS  PubMed  Google Scholar 

  3. Dziewas R, Ritter M, Schilling M et al (2004) Pneumonia in acute stroke patients fed by nasogastric tube. J Neurol Neurosurg Psychiatry 75:852–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Prass K, Meisel C, Höflich C et al (2003) Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J Exp Med 198:725–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prass K, Braun JS, Dirnagl U, Meisel C, Meisel A (2006) Stroke propagates bacterial aspiration to pneumonia in a model of cerebral ischemia. Stroke 37:2607–2612

    Article  PubMed  Google Scholar 

  6. Haeusler KG, Schmidt WUH, Föhring F et al (2008) Cellular immunodepression preceding infectious complications after acute ischemic stroke in humans. Cerebrovasc Dis 25:50–58

    Article  CAS  PubMed  Google Scholar 

  7. Vogelgesang A, Grunwald U, Langner S et al (2008) Analysis of lymphocyte subsets in patients with stroke and their influence on infection after stroke. Stroke 39:237–241

    Article  PubMed  Google Scholar 

  8. Hoffmann S, Harms H, Ulm L et al (2016) Stroke-induced immunodepression and dysphagia independently predict stroke-associated pneumonia—the PREDICT study. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X16671964

  9. Xue J, Huang W, Chen X et al (2017) Neutrophil-to-lymphocyte ratio is a prognostic marker in acute ischemic stroke. J Stroke Cerebrovasc Dis 26:650–657. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.11.010

    Article  PubMed  Google Scholar 

  10. Tokgoz S, Kayrak M, Akpinar Z, Seyithanoğlu A, Güney F, Yürüten B (2013) Neutrophil lymphocyte ratio as a predictor of stroke. J Stroke Cerebrovasc Dis 22:1169–1174. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.01.011

    Article  PubMed  Google Scholar 

  11. Tokgoz S, Keskin S, Kayrak M, Seyithanoglu A, Ogmegul A (2014) Is neutrophil/lymphocyte ratio predict to short-term mortality in acute cerebral infarct independently from infarct volume? J Stroke Cerebrovasc Dis 23:2163–2168. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.04.007

    Article  PubMed  Google Scholar 

  12. Wang F, Hu S, Ding Y et al (2016) Neutrophil-to-lymphocyte ratio and 30-day mortality in patients with acute intracerebral hemorrhage. J Stroke Cerebrovasc Dis 25:182–187. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.013

    Article  PubMed  Google Scholar 

  13. Langhorne P, Stott DJ, Robertson L et al (2000) Medical complications after stroke: a multicenter study. Stroke 31:1223–1229

    Article  CAS  PubMed  Google Scholar 

  14. Summers D, Leonard A, Wentworth D et al (2009) Comprehensive overview of nursing and interdisciplinary care of the acute ischemic stroke patient: a scientific statement from the American Heart Association. Stroke 40:2911–2944

    Article  PubMed  Google Scholar 

  15. Thompson HJ (2015) Evidence-base for fever interventions following stroke. Stroke 46:e98–e100. https://doi.org/10.1161/STROKEAHA.115.008188

    Article  PubMed  Google Scholar 

  16. Barber PA, Hill MD, Eliasziw M et al (2005) Imaging of the brain in acute ischaemic stroke: comparison of computed tomography and magnetic resonance diffusion-weighted imaging. J Neurol Neurosurg Psychiatry 76:1528–1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chamorro A, Urra X, Planas AM (2007) Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38:1097–1103

    Article  PubMed  Google Scholar 

  18. Liesz A, Hu X, Kleinschnitz C, Offner H (2015) Functional role of regulatory lymphocytes in stroke: facts and controversies. Stroke 46:1422–1430. https://doi.org/10.1161/STROKEAHA.114.008608

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dirnagl U, Klehmet J, Braun JS et al (2007) Stroke-induced immunodepression: experimental evidence and clinical relevance. Stroke 38:770–773

    Article  PubMed  Google Scholar 

  20. Meisel C, Meisel A (2011) Suppressing immunosuppression after stroke. N Engl J Med 365:2134–2136. https://doi.org/10.1056/NEJMcibr1112454

    Article  CAS  PubMed  Google Scholar 

  21. Harms H, Reimnitz P, Bohner G et al (2011) Influence of stroke localization on autonomic activation, immunodepression, and post-stroke infection. Cerebrovasc Dis 32:552–560. https://doi.org/10.1159/000331922

    Article  CAS  PubMed  Google Scholar 

  22. Meisel A, Meisel C, Harms H, Hartmann O, Ulm L (2012) Predicting post-stroke infections and outcome with blood-based immune and stress markers. Cerebrovasc Dis 33:580–588

    Article  CAS  PubMed  Google Scholar 

  23. Liesz A, Dalpke A, Mracsko E et al (2015) DAMP signaling is a key pathway inducing immune modulation after brain injury. J Neurosci 35:583–598. https://doi.org/10.1523/JNEUROSCI.2439-14.2015

    Article  PubMed  PubMed Central  Google Scholar 

  24. Veltkamp R, Gill D (2016) Clinical trials of immunomodulation in ischemic stroke. Neurotherapeutics 13:791–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Becker KJ (2010) Modulation of the postischemic immune response to improve stroke outcome. Stroke 41:S75–S78

    Article  PubMed  PubMed Central  Google Scholar 

  26. Macrez R, Ali C, Toutirais O et al (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 10:471–480. https://doi.org/10.1016/S1474-4422(11)70066-7

    Article  CAS  PubMed  Google Scholar 

  27. Maier IL, Karch A, Mikolajczyk R, Bähr M, Liman J (2015) Effect of beta-blocker therapy on the risk of infections and death after acute stroke—a historical cohort study. PLoS One 10:e0116836. https://doi.org/10.1371/journal.pone.0116836

    Article  PubMed  PubMed Central  Google Scholar 

  28. Starr JB, Tirschwell DL, Becker KJ (2017) Increased infections with β-blocker use in ischemic stroke, a β2-receptor mediated process? Neurol Sci 38:967–974. https://doi.org/10.1007/s10072-017-2877-x

    Article  PubMed  Google Scholar 

  29. Westendorp WF, Vermeij JD, Brouwer MC et al (2016) Pre-stroke use of beta-blockers does not lower post-stroke infection rate: an exploratory analysis of the preventive antibiotics in stroke study. Cerebrovasc Dis 42:506–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pagram H, Bivard A, Lincz LF, Levi C (2017) Immunity and stroke, the hurdles of stroke research translation. Int J Stroke 12:123–131

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Chang O Son for proofreading.

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1D1A3A01019331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Pil Park.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

ESM 1

(DOCX 1817 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, MG., Kim, MK., Chae, SH. et al. Lymphocyte-to-monocyte ratio on day 7 is associated with outcomes in acute ischemic stroke. Neurol Sci 39, 243–249 (2018). https://doi.org/10.1007/s10072-017-3163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-017-3163-7

Keywords

Navigation