Skip to main content
Log in

Relation of hydraulic conductivity to depth, alteration, and rock type in the volcanic rocks of Pahute Mesa, Nevada, USA

Relation entre la conductivité hydraulique et la profondeur, l’altération et le type de roche dans les roches volcaniques de Pahute Mesa, Nevada, États-Unis

Relación de la conductividad hidráulica con la profundidad, la alteración y el tipo de roca en las rocas volcánicas de Pahute Mesa, Nevada, EE.UU

美国内华达州帕Pahute Mesa火山岩渗透系数与深度,蚀变和岩石类型的关系

Relação da condutividade hidráulica com a profundidade, alteração e tipo de rocha nas rochas vulcânicas de Pahute Mesa, Nevada, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A large data set of hydraulic conductivity (K) with depth was used to examine and isolate the influences of rock type, volcanic-rock alteration, and depth on K heterogeneity in the volcanic rocks of Pahute Mesa, Nevada, USA. K varied laterally up to seven orders of magnitude, even when controlling for alteration, rock type, and depth. Mean K values, however, differed by no more than two orders of magnitude between different alteration, rock type, or depth groupings. Shallow fractured lava flows (LF) and welded tuff (WT) in the upper 500 m of the saturated zone are hydraulically similar and have the highest mean K values of the volcanic rocks studied. Largely because of these high-K rocks, 90% of the transmissivity occurs in the shallow part of the flow system. Matrix-dominated nonwelded and bedded tuffs and deep LFs and WTs have low mean K values because of secondary alteration and limited open fracture networks. The relations of K with overburden pressure have weak correlations because of large heterogeneity, even in hydraulically similar data sets. Overburden pressure likely causes a one-to-three orders of magnitude decrease in K in the saturated zone within 2,000 m of the land surface, whereas lateral heterogeneity varies at least five orders of magnitude at any given depth. Field-scale, lateral and vertical K distributions from this work can be applied to conceptual and numerical studies of groundwater flow in complex volcanic settings.

Résumé

Un grand jeu de données sur la conductivité hydraulique (K) en fonction de la profondeur a été utilisé pour examiner et isoler les influences respectives du type de roche, de l’altération des roches volcaniques et de la profondeur sur l’hétérogénéité de K dans les roches volcaniques de Pahute Mesa, Nevada, Etats-Unis d’Amérique. K varie latéralement jusqu’à sept ordres de grandeur, même en contrôlant l’altération, le type de roche et la profondeur. Cependant, les valeurs moyennes de K ne diffèrent pas de plus de deux ordres de grandeur entre les différents groupes d’altération, de type de roche ou de profondeur. Les coulées de lave fracturées peu profondes (LF) et les tufs soudés (WT) situés dans les 500 m supérieurs de la zone saturée sont hydrauliquement similaires et présentent les valeurs moyennes de K les plus élevées des roches volcaniques étudiées. En grande partie à cause de ces roches à K élevée, 90% de la transmissivité se trouve dans la partie peu profonde du système d’écoulement. Les tufs non soudés et lités dominés par la matrice et les LF et WT profonds ont des valeurs moyennes de K faibles en raison d’une altération secondaire et de réseaux de fractures ouvertes limités. Les relations de K avec la pression des terrains de recouvrement ont des corrélations faibles en raison de la forte hétérogénéité, même dans des jeux de données hydrauliquement similaires. La pression des terrains de recouvrement entraîne probablement une diminution d’un à trois ordres de grandeur de K dans la zone saturée à moins de 2000 m de profondeur, alors que l’hétérogénéité latérale varie d’au moins cinq ordres de grandeur à toute profondeur donnée. Les distributions latérales et verticales de K à l’échelle du terrain issues de ce travail peuvent être appliquées aux études conceptuelles et numériques de l’écoulement des eaux souterraines dans des environnements volcaniques complexes.

Resumen

Se utilizó un amplio conjunto de datos de conductividad hidráulica (K) en función de la profundidad para examinar y aislar las influencias del tipo de roca, la alteración de la roca volcánica y la profundidad con respecto a la heterogeneidad de K en las rocas volcánicas de Pahute Mesa, Nevada, Estados Unidos. El K varió lateralmente hasta siete órdenes de magnitud, incluso cuando se controló la alteración, el tipo de roca y la profundidad. Los valores medios de K, sin embargo, no difieren en más de dos órdenes de magnitud entre los diferentes grupos de alteración, tipo de roca o profundidad. Los flujos de lava fracturados poco profundos (LF) y la toba sellada (WT) en los 500 m superiores de la zona saturada son hidráulicamente similares y tienen los valores medios de K más altos de las rocas volcánicas estudiadas. En gran parte debido a estas rocas de alto K, el 90% de la transmisividad se produce en la parte somera del sistema de flujo. Las tobas no soldadas y estratificadas dominadas por la matriz y las LF y WT profundas tienen valores medios de K bajos debido a la alteración secundaria y a las limitadas redes de fracturas abiertas. Las relaciones de K con la presión de sobrecarga tienen correlaciones débiles debido a la alta heterogeneidad, incluso en conjuntos de datos hidráulicamente similares. La presión de sobrecarga probablemente causa una disminución de uno a tres órdenes de magnitud en K en la zona saturada dentro de los 2,000 m de la superficie terrestre, mientras que la heterogeneidad lateral varía al menos cinco órdenes de magnitud a cualquier profundidad. Las distribuciones de K laterales y verticales a escala de campo de este trabajo pueden aplicarse a estudios conceptuales y numéricos del flujo de agua subterránea en entornos volcánicos complejos.

摘要

一套与深度相关的渗透系数(K)大数据集用于研究和分析美国内华达州Pahute Mesa火山岩岩石类型、火山岩蚀变和渗透系数非均质厚度的影响。 K 侧向变化最多可达七个数量级,即使控制蚀变,岩石类型和深度。但是,平均K值在不同的蚀变、岩石类型或深度分组之间的差异不超过两个数量级。饱和区500 m的浅裂隙熔岩流(LF)和密实凝灰岩(WT)在水力上具有相似性,并且所研究的火山岩的平均K值最高。很大程度上是由于这些高K岩石,90%的传导系数发生在流动系统的浅层部分。由于次要蚀变和有限的开裂缝网络,基质主导的非密实和成层凝灰岩以及深LFs和WTs的平均K值较低。由于异质性很大,即使对于水力上相似的数据集,K 与覆盖压力的关系具有较弱的相关性。覆盖压力可能会导致2,000 m地表以内的饱和区的K降低一到三个数量级,而在任何给定的深度,侧向异质性至少有五个数量级变化。本工作的野外尺度、侧向和垂直K分布研究可以应用于复杂火山环境中地下水流的概念模型和数值研究。

Resumo

Um grande conjunto de dados de condutividade hidráulica (K) com profundidade foi usado para examinar e isolar as influências do tipo de rocha, alteração da rocha vulcânica e profundidade sobre a heterogeneidade de K nas rochas vulcânicas de Pahute Mesa, Nevada, EUA. K variava lateralmente até sete ordens de magnitude, mesmo quando se controlava por alteração, tipo de rocha e profundidade. Os valores médios de K, entretanto, diferiram por não mais que duas ordens de magnitude entre diferentes alterações, tipo de rocha, ou agrupamentos de profundidade. Os fluxos rasos de lava fraturada (LF) e tufo vulcânico soldado (TVS) nos 500 m mais altos da zona saturada são hidraulicamente similares e têm os maiores valores médios de K das rochas vulcânicas estudadas. Em grande parte, devido a estas rochas apresentarem alto K, 90% da transmissividade ocorre na parte rasa do sistema de fluxo. Os tampões não soldados e de cama dominados por matriz e os LFs e TVSs profundos têm baixos valores médios de K por causa da alteração secundária e redes de fraturas abertas limitadas. As relações de K com pressão de sobrecarga têm correlações fracas devido à grande heterogeneidade, mesmo em conjuntos de dados hidraulicamente semelhantes. A pressão de sobrecarga provavelmente causa uma diminuição de uma a três ordens de magnitude em K na zona saturada dentro de 2,000 m da superfície terrestre, enquanto a heterogeneidade lateral varia pelo menos cinco ordens de magnitude em qualquer profundidade. As distribuições de K em escala de campo, lateral e vertical deste trabalho podem ser aplicadas a estudos conceituais e numéricos do fluxo de águas subterrâneas em ambientes vulcânicos complexos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allocca V, Colantuono P, Colella A, Piacentini SM, Piscopo V (2022) Hydraulic properties of ignimbrites: matrix and fracture permeabilities in two pyroclastic flow deposits from Cimino-Vico volcanoes (Italy). Bull Eng Geol Environ 81(221). https://doi.org/10.1007/s10064-022-02712-0

  • Anderson SR, Kuntz MA, Davis LC (1999) Geologic controls of hydraulic conductivity in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory, Idaho. US Geol Surv Water Resour Invest Rep 99-4033. https://doi.org/10.3133/wri994033

  • Aschwanden L, Diamond LW, Adams A (2019) Effects of progressive burial on matrix porosity and permeability of dolostones in the foreland basin of the Alpine Orogen, Switzerland. Mar Pet Geol 100:148–164. https://doi.org/10.1016/j.marpetgeo.2018.10.055

    Article  Google Scholar 

  • Bechtel Nevada (2002) A hydrostratigraphic model and alternatives for the groundwater flow and contaminant transport model of Corrective Action Units 101 and 102: central and western Pahute Mesa, Nye County, Nevada. Report DOE/NV/11718-706, US DOE. https://doi.org/10.2172/799777

  • Belcher WR, Elliott PE, Geldon AL (2001) Hydraulic-property estimates for use with a transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California. US Geol Surv Water Resour Invest Rep 2001-4210. https://doi.org/10.3133/wri014210

  • Belcher WR, Sweetkind DS, Elliott PE (2002) Probability distributions of hydraulic conductivity for the hydrogeologic units of the Death Valley regional ground-water flow system, Nevada and California. US Geol Surv Water Resour Invest Rep 2002-4212. https://doi.org/10.3133/wri024212

  • Benedict FC Jr., Rose TP, Zhou X (2000) Mineralogical, chemical, and isotopic characterization of fracture-coating minerals in borehole samples from western Pahute Mesa and Oasis Valley, Nevada. Report UCRL-ID-152919, Lawrence Livermore National Laboratory. https://doi.org/10.2172/15006451

  • Bernabé Y, Mok U, Evans B (2003) Permeability-porosity relationships in rocks subjected to various evolution processes. Pure Appl Geophys 160(5):937–960. https://doi.org/10.1007/PL00012574

    Article  Google Scholar 

  • Blackwell DD, Baker SL (1988) Thermal analysis of the Austin and Breitenbush geothermal systems, western Cascades, Oregon. In: Sherrod DR (ed) Geology and geothermal resources of the Breitenbush-Austin Hot Springs area, Clackamas and Marion Counties. Open File Rep O-88-5, OR Dept. of Geol. and Miner. Ind., pp 47–62. https://digital.osl.state.or.us

  • Blankennagel RK (1967) Hydraulic testing techniques of deep drill holes at Pahute Mesa, Nevada Test Site. US Geol Surv Open-File Rep 67–18. https://doi.org/10.3133/ofr6718

  • Blankennagel RK, Weir JE Jr. (1973) Geohydrology of the eastern part of Pahute Mesa, Nevada Test Site, Nye, County, Nevada. US Geol Surv Prof Pap 712-B. https://doi.org/10.3133/pp712B

  • Bouwer H, Rice RC (1976) A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resour Res 12(3):423–428. https://doi.org/10.1029/WR012i003p00423

    Article  Google Scholar 

  • Brace WF (1980) Permeability of crystalline and argillaceous rocks. Int J Rock Mech Min Sci Geomech 17(5):241–251. https://doi.org/10.1016/0148-9062(80)90807-4

    Article  Google Scholar 

  • Brace WF (1984) Permeability of crystalline rock: new in situ measurements. J Geophys Res 89(B6):4327–4330. https://doi.org/10.1029/JB089iB06p04327

    Article  Google Scholar 

  • Byers PM Jr., Carr WJ, Orkild PP, Quinlivan WD, Sargent KA (1976) Volcanic suites and related cauldrons of Timber Mountain-Oasis Valley caldera complex, southern Nevada. US Geol Surv Prof Pap 919. https://doi.org/10.3133/pp919

  • Cardenas MB, Jiang XW (2010) Groundwater flow, transport, and residence times through topography-driven basins with exponentially decreasing permeability and porosity. Water Resour Res 46(W11538):9. https://doi.org/10.1029/2010WR009370

    Article  Google Scholar 

  • Carle SF (2020) Interpretation of mineralogical diagenesis for assessment of radionuclide transport at Pahute Mesa, Nevada National Security Site. Lawrence Livermore National Laboratory report LLNL-TR-810225. https://doi.org/10.2172/1638448

  • Cas RAF, Wright JV (1988) Volcanic successions modern and ancient. Chapman and Hall, London

  • Christiansen RL, Lipman PW, Carr WJ, Byers FM Jr, Orkild PP, Sargent KA (1977) Timber Mountain–Oasis Valley caldera complex of southern Nevada. Geol Soc Am Bull 88(7):943–959. https://doi.org/10.1130/0016-7606(1977)88<943:TMVCCO>2.0.CO;2

    Article  Google Scholar 

  • Clauser C (1992) Permeability of crystalline rocks. EOS Trans Am Geophys Union 73(21):233–240. https://doi.org/10.1029/91EO00190

    Article  Google Scholar 

  • Custodio E (2007) Groundwater in volcanic rocks. In: Krásný J, Sharp Jr. JM (eds) Groundwater in fractured rocks, selected papers from the Groundwater in Fractured Rocks International Conference, Prague, 2003, Int. Assoc. Hydrogeologists Sel. Pap. Ser., vol 9, Taylor and Francis, New York, pp 95–108

  • Dickerson R, Fryer, B, Hand J (2006) Letter report: fracture database evaluation and analysis: Stoller-Navarro Joint Venture Tech. Report. https://doi.org/10.13140/2.1.1364.5602

  • DOE (2009) Phase II corrective action investigation plan for Corrective Action Units 101 and 102: central and western Pahute Mesa, Nevada Test Site, Nye County, Nevada. US Dept. of Energy report DOE/NV—1312-Rev.2. https://doi.org/10.2172/968999

  • DOE (2015) United States nuclear tests, July 1945 through September 1992. US Dept. of Energy report DOE/NV-209 REV 16. https://doi.org/10.2172/1351809

  • DOE (2020) Pahute Mesa–Oasis Valley hydrostratigraphic framework model for Corrective Action Units 101 and 102, central and western Pahute Mesa, Nye County, Nevada. US Dept. of Energy report DOE/EMNV-0014. https://doi.org/10.2172/1688394

  • Drellack SL Jr, Prothro LB, Roberson KE, Schier BA, Price EH (1997) Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site. US Dept. of Energy report DOE/NV/11718-160. https://doi.org/10.2172/623041

  • Drellack SL Jr, Prothro LB, Gonzales JL, Mercadante JM (2010) The hydrogeologic character of the lower tuff confining unit and the Oak Spring Butte confining unit in the tuff pile area of central Yucca Flat. US Dept of Energy report DOE/NV/25946-544. https://doi.org/10.2172/985874

  • Fenelon JM, Sweetkind DS, Laczniak RJ (2010) Groundwater flow systems at the Nevada Test Site, Nevada: a synthesis of potentiometric contours, hydrostratigraphy, and geologic structures. US Geol Surv Prof Pap 1771. https://doi.org/10.3133/pp1771

  • Fenelon JM, Halford KJ, Moreo MT (2016) Delineation of the Pahute Mesa–Oasis Valley groundwater basin, Nevada. US Geol Surv Sci Invest Rep 2015–5175. https://doi.org/10.3133/sir20155175

  • Frus RJ, Halford KJ (2018) Documentation of single-well aquifer tests and integrated borehole analyses, Pahute Mesa and vicinity, Nevada. US Geol Surv Sci Invest Rep. https://doi.org/10.3133/sir20185096

  • Grauch VJ, Sawyer DA, Fridrich CJ, Hudson MR (1999) Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications. US Geol Surv Prof Pap 1608. https://doi.org/10.3133/pp1608

  • Halford KJ (2016) T-COMP: a suite of programs for extracting transmissivity from MODFLOW models. US Geological Survey Tech. and Methods, book 6, chap. A54. https://doi.org/10.3133/tm6A54

  • Halford KJ, Jackson TR (2020) Groundwater characterization and effects of pumping in the Death Valley regional groundwater flow system, Nevada and California, with special reference to Devils Hole. US Geol Surv Prof Pap 1863. https://doi.org/10.3133/pp1863

  • Halford KJ, Weight WD, Schreiber RP (2006) Interpretation of transmissivity estimates from single-well pumping aquifer tests. Groundwater 44(3):467–471. https://doi.org/10.1111/j.1745-6584.2005.00151.x

    Article  Google Scholar 

  • Helsel DR (2012) Statistics for censored environmental data using Minitab® and R. Wiley, Hoboken, NJ. https://doi.org/10.1002/9781118162729

    Book  Google Scholar 

  • Helsel DR, Cohn TA (1988) Estimation of descriptive statistics for multiply censored water quality data. Water Resour Res 24(12):1997–2004. https://doi.org/10.1029/WR024i012p01997

    Article  Google Scholar 

  • Helsel DR, Gilliom RJ (1986) Estimation of distributional parameters for censored trace level water quality data: 2. verification and applications. Water Resour Res 22(2):147–155. https://doi.org/10.1029/WR022i002p00147

    Article  Google Scholar 

  • Helsel DR, Hirsch RM, Ryberg KR, Archfield SA, Gilroy EJ (2020) Statistical methods in water resources. US Geological Survey Tech. and Methods, book 4, chap. A3. https://doi.org/10.3133/tm4a3

  • Hildenbrand TG, Phelps GA, Mankinen EA (2006) Inversion of gravity data to define the pre-Cenozoic surface and regional structures possibly influencing groundwater flow in the Rainier Mesa region, Nye County, Nevada. US Geol Surv Open-File Rep 2006-1299. https://doi.org/10.3133/ofr20061299

  • Ingebritsen SE, Manning CE (1999) Geological implications of a permeability-depth curve for the continental crust. Geology 27(12):1107–1110. https://doi.org/10.1130/0091-7613(1999)027<1107:GIOAPD>2.3.CO;2

    Article  Google Scholar 

  • Ingebritsen SE, Manning CE (2010) Permeability of the continental crust: dynamic variations inferred from seismicity and metamorphism. Geofluids 10:193–205. https://doi.org/10.1111/j.1468-8123.2010.00278.x

    Article  Google Scholar 

  • Ingebritsen SE, Sanford, WE (1998) Groundwater in geologic processes. Cambridge Univ. Press, Cambridge, UK

  • Istok JD, Rautman CA, Flint LE, Flint AL (1994) Spatial variability in hydrologic properties of volcanic tuff. Groundwater 32(5):751–760. https://doi.org/10.1111/j.1745-6584.1994.tb00916.x

    Article  Google Scholar 

  • Jackson TR, Fenelon JM, Paylor RL (2021) Groundwater flow conceptualization of the Pahute Mesa–Oasis Valley groundwater basin, Nevada: a synthesis of geologic, hydrologic, hydraulic-property, and tritium data. US Geol Surv Sci Invest Rep 2020-5134. https://doi.org/10.3133/sir20205134

  • Jackson TR, Fenelon JM, Gainey SR (2022) Pervasive, preferential flow through mega-thick unsaturated zones in the southern Great Basin, Groundwater, 14 pp. https://doi.org/10.1111/gwat.13187

  • Jayne RS, Pollyea RM (2018) Permeability correlation structure of the Columbia River Plateau and implications for fluid system architecture in continental large igneous provinces. Geology 46(8):715–718. https://doi.org/10.1130/G45001.1

    Article  Google Scholar 

  • Jiang XW, Wan L, Wang XS, Ge S, Liu J (2009) Effect of exponential decay in hydraulic conductivity with depth on regional groundwater flow. Geophys Res Lett 36(L24402):4. https://doi.org/10.1029/2009GL041251

    Article  Google Scholar 

  • Jiang XW, Wang XS, Wan L (2010) Semi-empirical equations for the systematic decrease in permeability with depth in porous and fractured media. Hydrogeol J 18(4):839–850. https://doi.org/10.1007/s10040-010-0575-3

    Article  Google Scholar 

  • Kuang X, Jiao JJ (2014) An integrated permeability-depth model for Earth’s crust. Geophys Res Lett 41:7539–7545. https://doi.org/10.1002/2014GL061999

    Article  Google Scholar 

  • Lachassagne P, Wyns R, Dewandel B (2011) The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 23:145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x

    Article  Google Scholar 

  • Laczniak RJ, Cole JC, Sawyer DA, Trudeau DA (1996) Summary of hydrogeologic controls on ground-water flow at the Nevada Test Site, Nye County, Nevada. US Geol Surv Sci Invest Rep 96-4109. https://doi.org/10.3133/wri964109

  • Lu Z, Kwicklis E, Miller T, Bourret M (2021) Development and calibration of the Pahute Mesa bench area groundwater flow and tritium transport model, Nevada National Security Site. Los Alamos Natl. Lab. report LA-UR-21-23595, Los Alamos National Laboratory, Los Alamos, NM

  • McKee EH, Hildenbrand TG, Anderson ML, Rowley PD, Sawyer DA (1999) The Silent Canyon caldera complex: a three-dimensional model based on drill-hole stratigraphy and gravity inversion. US Geol Surv Open-File Rep 99-555. https://doi.org/10.3133/ofr99555

  • Mirus BB, Halford K, Sweetkind D, Fenelon J (2016) Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales. Hydrogeol J 24:1133–1146. https://doi.org/10.1007/s10040-016-1375-1

    Article  Google Scholar 

  • Moncure GK, Surdam RC, McKague HL (1981) Zeolite diagenesis below Pahute Mesa. Clay Clay Miner 29(5):385–396. https://doi.org/10.1346/CCMN.1981.0290508

    Article  Google Scholar 

  • Prothro LB, Drellack SL Jr. (1997) Nature and extent of lava-flow aquifers beneath Pahute Mesa, Nevada Test Site. US Dept. of Energy report DOE/NV/11718-156. https://doi.org/10.2172/653925

  • Ranjram M, Gleeson T, Luijendijk E (2015) Is the permeability of crystalline rock in the shallow crust related to depth, lithology or tectonic setting? Geofluids 15:106–119. https://doi.org/10.1111/gfl.12098

    Article  Google Scholar 

  • Ross CS, Smith RL (1961) Ash-flow tuffs: their origin and geologic relations and identification. US Geol Surv Prof Pap 366. https://doi.org/10.3133/pp366

  • Saar MO, Manga M (2004) Depth dependence of permeability in the Oregon Cascades inferred from hydrogeologic, thermal, seismic, and magmatic modeling constraints. J Geophys Res 109(B04204):19. https://doi.org/10.1029/2003JB002855

    Article  Google Scholar 

  • Sawyer DA, Fleck RJ, Lanphere MA, Warren RG, Broxton DE, Hudson MR (1994) Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension. Geol Soc Am Bull 106(10):1304–1318. https://doi.org/10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2

    Article  Google Scholar 

  • Scott SW, Driesner T (2018) Permeability changes resulting from quartz precipitation and dissolution around upper crustal intrusions. Geofluids 2018(6957306):19. https://doi.org/10.1155/2018/6957306

    Article  Google Scholar 

  • Sheppard RA, Hay RL (2001) Formation of zeolites in open systems. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties, applications. Rev Mineral Geochem 45:261–276. https://doi.org/10.1515/9781501509117-010

  • Shmonov VM, Vitiovtova VM, Zharikov AV, Grafchikov AA (2003) Permeability of the continental crust: implications of experimental data. J Geochem Explor 78–79:697–699. https://doi.org/10.1016/S0375-6742(03)00129-8

    Article  Google Scholar 

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks, 2nd edn. Springer. https://doi.org/10.1007/978-90-481-8799-7

  • Soulé DA (2006) Climatology of the Nevada Test Site. Special Oper. and Res. Div. Tech. Memo. SORD 2006-3, Special Operations and Research Division, Las Vegas, NV. https://www.sord.nv.doe.gov/documents/Climatology_of_The_Nevada_Test_Site.Soule.pdf. Accessed Nov 2022

  • Sruoga P, Rubinstein N (2007) Processes controlling porosity and permeability in volcanic reservoirs from the Austral and Neuquén basins, Argentina. AAPG Bull 91(1):115–129. https://doi.org/10.1306/08290605173

    Article  Google Scholar 

  • Sruoga P, Rubinstein N, Hinterwimmer G (2004) Porosity and permeability in volcanic rocks: a case study on the Serie Tobífera, South Patagonia, Argentina. J Volcanol Geotherm Res 132:31–43. https://doi.org/10.1016/S0377-0273(03)00419-0

    Article  Google Scholar 

  • Stoller-Navarro Joint Venture (2004) Hydrologic data for the groundwater flow and contaminant transport model of Corrective Action Units 101 and 102, central and western Pahute Mesa, Nye County, Nevada. S-N/99205—002. https://doi.org/10.2172/1119864

  • Stoller-Navarro Joint Venture (2009) Phase I transport model of Corrective Action Unit 101 and 102: central and western Pahute Mesa, Nevada Test Site, Nye County, Nevada. S-N/99205-111. https://doi.org/10.2172/948559

  • USGS (2021) USGS water data for the nation. https://waterdata.usgs.gov/nwis. Accessed 1 May 2021

  • Utada M (2001) Zeolites in hydrothermally altered rocks. In: Bish DL, Ming DW (eds) Natural zeolites—occurrence, properties, applications. Rev. Mineral. Geochem 45:305–322. https://doi.org/10.1515/9781501509117-012

  • Wahl RR, Sawyer DA, Minor SA, Carr MD, Cole JC, Swadley WC, Laczniak RJ, Warren RG, Green KS, Engle CM (1997) Digital geologic map database of the Nevada Test Site area, Nevada. US Geol Surv Open-File Rep. https://doi.org/10.3133/ofr97140

  • Wang JSY, Narasimhan TN (1990) Fluid flow in partially saturated, welded-nonwelded tuff units. Geoderma 46:155–168. https://doi.org/10.1016/0016-7061(90)90013-Y

    Article  Google Scholar 

  • Warren RG, Sawyer DA, Byers FM, Cole GL (2003) A petrographic, geochemical, and geophysical database, and stratigraphic framework for the southwestern Nevada volcanic field. Los Alamos Natl. Lab. report LA-UR-03-1503, Los Alamos National Laboratory, Los Alamos, NM

  • White FW (2011) Fluid mechanics, 7th edn. McGraw-Hill, New York

  • Winograd IJ (1971) Hydrogeology of ash flow tuff: a preliminary statement. Water Resour Res 7(4):994–1006. https://doi.org/10.1029/WR007i004p00994

    Article  Google Scholar 

  • Winograd IJ, Thordarson W (1975) Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada Test Site. US Geol Surv Prof Pap 712-C. https://doi.org/10.3133/pp712C

  • Wood DB (2007) Digitally available interval-specific rock-sample data compiled from historical records, Nevada National Security Site and vicinity, Nye County, Nevada (ver. 2.2, February 2017). USGS Data Ser. 297, US Geological Survey, Reston, VA. https://doi.org/10.3133/ds297

  • Worthington SRH (2021) Factors affecting the variation of permeability with depth in carbonate aquifers. Hydrogeol J 29:21–32. https://doi.org/10.1007/s10040-020-02247-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers and editors for their comments, which have improved the quality of this report. We thank Keith J. Halford, US Geological Survey (retired), for his advice and guidance during this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tracie R. Jackson.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 209 kb)

ESM 2

(XLSX 308 kb)

ESM 3

(XLSX 332 kb)

ESM 4

(XLSX 191 kb)

ESM 5

(XLSX 296 kb)

ESM 6

(XLSX 495 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, T.R., Fenelon, J.M. Relation of hydraulic conductivity to depth, alteration, and rock type in the volcanic rocks of Pahute Mesa, Nevada, USA. Hydrogeol J 30, 2417–2432 (2022). https://doi.org/10.1007/s10040-022-02571-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-022-02571-9

Keywords

Navigation