Skip to main content
Log in

Electrodeposition and characterization of copper sulfide (CuS) thin film: towards an understanding of the growth mechanism

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Copper sulfide (CuS) thin film was electrodeposited onto stainless steel (SS 316L) substrate under pulse potential control, from an aqueous acidic solution containing 10−3 M of CuSO4.5H2O and 10−2 M of SC(NH2)2. The solution pH was maintained at 2.2 ± 0.1 by adding a few microliters of 0.1 M H2SO4 solution. The electrodeposited thin film was grown at 30 °C by applying a forward potential (EF) of − 0.85 V vs Ag/AgCl for 0.2 s and a reverse potential (ER) of 0 V vs Ag/AgCl for 0.4 s. Cyclic voltammetry (CV) was used to determine EF and ER as well as the possible reactions that occurred in the studied system and to understand the electrochemical behavior of the SS 316 L substrate on the deposition solutions. Normal and grazing incidence X-ray diffraction (XRD), Raman spectroscopy, and energy-dispersive analysis of X-ray (EDAX) techniques showed that the obtained thin film, applying EF and ER, was a hexagonal covellite CuS. Scanning electron microscopy (SEM) analysis showed that the obtained CuS film is grainy and contained some cracks. Profilometry indicated that the elaborated film has a thickness of 7.85 ± 0.71 µm. Electrochemical impedance spectroscopy (EIS) and Mott–Schottky (MS) analysis were performed, but the results are controversial because of the participation of SS 316 L substrate in the behavior of the obtained data.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Yang D, Liu Z (2007) One-dimensional nanostructures of silicon: synthesis, characterization and applications. Adv Mater 95–110

  2. Duan X, Huang Y, Cui Y, Wang J (2002) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 261(409):1–4

    Google Scholar 

  3. Lai CH, Lu MY, Chen LJ (2012) Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 22:19–30. https://doi.org/10.1039/c1jm13879k

    Article  CAS  Google Scholar 

  4. Guzeldir B, Saglam M, Ates A (2012) Deposition and characterization of CdS, CuS and ZnS thin films deposited by SILAR method. Acta Physica Polonica A 121:33–35. https://doi.org/10.12693/APhysPolA.121.33

  5. Yu Z, Du J, Guo S et al (2002) CoS thin films prepared with modified chemical bath deposition. Thin Solid Films 415:173–176

    Article  CAS  Google Scholar 

  6. Ikhioya IL, Ijabor B (2018) Growth and characterization of manganese sulphide (MnS) thin films

  7. El OR, Almaggoussi A, Rajira A et al (2021) Towards a stoichiometric electrodeposition of SnS. Appl Phys A Mater Sci Process 127:1–10. https://doi.org/10.1007/s00339-020-04165-2

    Article  CAS  Google Scholar 

  8. Sarma A, Dippel AC, Gutowski O et al (2019) Electrodeposition of nanowires of a high copper content thiourea precursor of copper sulfide. RSC Adv 9:31900–31910. https://doi.org/10.1039/c9ra04293h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. George J, Joseph KS (1983) Amorphous films of CuS. Solid State Commun 48:601–603. https://doi.org/10.1016/0038-1098(83)90524-0

    Article  CAS  Google Scholar 

  10. Chen Y, Davoisne C, Tarascon JM, Guéry C (2012) Growth of single-crystal copper sulfide thin films via electrodeposition in ionic liquid media for lithium ion batteries. J Mater Chem 22:5295–5299. https://doi.org/10.1039/c2jm16692e

    Article  CAS  Google Scholar 

  11. Manivannan R, Victoria SN (2018) Preparation of chalcogenide thin films using electrodeposition method for solar cell applications – a review. Sol Energy 173:1144–1157. https://doi.org/10.1016/j.solener.2018.08.057

    Article  CAS  Google Scholar 

  12. Reynolds DC, Leies G, Antes LL, Marburger RE (1991) Photovoltaic effect in cadmium sulfide. Semiconductor Devices: Pioneering Papers 971–972. https://doi.org/10.1142/9789814503464_0139

  13. Chu L, Zhou B, Mu H et al (2008) Mild hydrothermal synthesis of hexagonal CuS nanoplates. J Cryst Growth 310:5437–5440. https://doi.org/10.1016/j.jcrysgro.2008.09.159

    Article  CAS  Google Scholar 

  14. Chen L, Yu W, Li Y (2009) Synthesis and characterization of tubular CuS with flower-like wall from a low temperature hydrothermal route. Powder Technol 191:52–54. https://doi.org/10.1016/j.powtec.2008.09.007

    Article  CAS  Google Scholar 

  15. Zhang J, Zhang Z (2008) Hydrothermal synthesis and optical properties of CuS nanoplates. Mater Lett 62:2279–2281. https://doi.org/10.1016/j.matlet.2007.11.069

    Article  CAS  Google Scholar 

  16. Patil SA, Mengal N, Memon AA et al (2017) CuS thin film grown using the one pot, solution-process method for dye-sensitized solar cell applications. J Alloy Compd 708:568–574. https://doi.org/10.1016/j.jallcom.2017.03.026

    Article  CAS  Google Scholar 

  17. Dhasade SS, Patil JS, Han SH et al (2013) Copper sulfide nanorods grown at room temperature for photovoltaic application. Mater Lett 90:138–141. https://doi.org/10.1016/j.matlet.2012.09.013

    Article  CAS  Google Scholar 

  18. Chinnadurai D, Rajendiran R, Kandasamy P (2022) Bimetallic copper nickel sulfide electrocatalyst by one step chemical bath deposition for efficient and stable overall water splitting applications. J Colloid Interface Sci 606:101–112. https://doi.org/10.1016/j.jcis.2021.07.145

    Article  CAS  PubMed  Google Scholar 

  19. Liu J, Xue D (2009) Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. J Cryst Growth 311:500–503. https://doi.org/10.1016/j.jcrysgro.2008.09.025

    Article  CAS  Google Scholar 

  20. Mazor H, Golodnitsky D, Burstein L, Peled E (2009) High power copper sulfide cathodes for thin-film microbatteries. Electrochem Solid-State Lett 12:232–235. https://doi.org/10.1149/1.3240921

    Article  CAS  Google Scholar 

  21. Chung JS, Sohn HJ (2002) Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries. J Power Sources 108:226–231. https://doi.org/10.1016/S0378-7753(02)00024-1

    Article  CAS  Google Scholar 

  22. Jin K, Zhou M, Zhao H et al (2019) Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage. Elsevier Ltd

  23. Šetkus A, Galdikas A, Mironas A et al (2001) Properties of CuxS thin film based structures: Influence on the sensitivity to ammonia at room temperatures. Thin Solid Films 391:275–281. https://doi.org/10.1016/S0040-6090(01)00995-6

    Article  Google Scholar 

  24. Goel S, Chen F, Cai W (2014) Synthesis and biomedical applications of copper sulfide nanoparticles: From sensors to theranostics. NANO MICRO Small 10:631–645. https://doi.org/10.1002/smll.201301174

    Article  CAS  Google Scholar 

  25. Shen XP, Zhao H, Shu HQ et al (2009) Self-assembly of CuS nanoflakes into flower-like microspheres: synthesis and characterization. J Phys Chem Solids 70:422–427. https://doi.org/10.1016/j.jpcs.2008.11.009

    Article  CAS  Google Scholar 

  26. Aditya D, Sawitri RA, Diantoro M (2019) Electrical properties of tetrahedrite CuS based thermoelectric material. Mater Today: Proc 13:13–17. https://doi.org/10.1016/j.matpr.2019.03.179

    Article  CAS  Google Scholar 

  27. Sangamesha MA, Pushpalatha K, Shekar GL, Shamsundar S (2013) Preparation and characterization of nanocrystalline CuS thin films for dye-sensitized solar cells. ISRN Nanomaterials 2013:1–8. https://doi.org/10.1155/2013/829430

    Article  CAS  Google Scholar 

  28. Fu Y, Li Q, Liu J et al (2020) In-situ chemical vapor deposition to fabricate cuprous oxide/copper sulfide core-shell flowers with boosted and stable wide-spectral region photocatalytic performance. J Colloid Interface Sci 570:143–152. https://doi.org/10.1016/j.jcis.2020.02.110

    Article  CAS  PubMed  Google Scholar 

  29. Isac A, Duta A, Kriza A et al (2007) The growth of CuS thin films by spray pyrolysis. J Phys: Conf Ser 61:477–481. https://doi.org/10.1088/1742-6596/61/1/096

    Article  CAS  Google Scholar 

  30. Sahoo AK, Mohanta P, Bhattacharyya AS (2015) Structural and optical properties of CuS thin films deposited by thermal co-evaporation. IOP Conference Series: Mater Sci Eng 73. https://doi.org/10.1088/1757-899X/73/1/012123

  31. Liao XH, Chen NY, Xu S et al (2003) A microwave assisted heating method for the preparation of copper sulfide nanorods. J Cryst Growth 252:593–598. https://doi.org/10.1016/S0022-0248(03)01030-3

    Article  CAS  Google Scholar 

  32. Pal M, Mathews NR, Sanchez-Mora E et al (2015) Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity. J Nanopart Res 17. https://doi.org/10.1007/s11051-015-3103-5

  33. Singh A, Manivannan R, Victoria SN (2019) Simple one-pot sonochemical synthesis of copper sulphide nanoparticles for solar cell applications. Arab J Chem 12:2439–2447. https://doi.org/10.1016/j.arabjc.2015.03.013

    Article  CAS  Google Scholar 

  34. Li F, Wu J, Qin Q et al (2010) Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures. Powder Technol 198:267–274. https://doi.org/10.1016/j.powtec.2009.11.018

    Article  CAS  Google Scholar 

  35. Bhosale PN, Patil SS, Desai ND et al (2018) Single step fabrication of CuS thin film via Hydrothermal route for solar cell application. Am Inst Phyis 020029:1–6. https://doi.org/10.1063/1.5047705

    Article  CAS  Google Scholar 

  36. Riyaz S, Parveen A, Azam A (2016) Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route. Perspectives Sci 8:632–635. https://doi.org/10.1016/j.pisc.2016.06.041

    Article  Google Scholar 

  37. Gao L, Wang E, Lian S et al (2004) Microemulsion-directed synthesis of different CuS nanocrystals. Solid State Commun 130:309–312. https://doi.org/10.1016/j.ssc.2004.02.014

    Article  CAS  Google Scholar 

  38. Zhang HT, Wu G, Chen XH (2006) Controlled synthesis and characterization of covellite (CuS) nanoflakes. Mater Chem Phys 98:298–303. https://doi.org/10.1016/j.matchemphys.2005.09.024

    Article  CAS  Google Scholar 

  39. Wang Q, Li J, Li G et al (2007) Formation of CuS nanotube arrays from CuCl nanorods through a gas-solid reaction route. J Cryst Growth 299:386–392. https://doi.org/10.1016/j.jcrysgro.2006.11.304

    Article  CAS  Google Scholar 

  40. Li B, Xie Y, Xue Y (2007) Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance. J Phys Chem 12181–12187

  41. Roy P, Srivastava SK (2007) Low-temperature synthesis of CuS nanorods by simple wet chemical method. Mater Lett 61:1693–1697. https://doi.org/10.1016/j.matlet.2006.07.101

    Article  CAS  Google Scholar 

  42. Dutta A, Dolui SK (2008) Preparation of colloidal dispersion of CuS nanoparticles stabilized by SDS. Mater Chem Phys J 112:448–452. https://doi.org/10.1016/j.matchemphys.2008.05.072

    Article  CAS  Google Scholar 

  43. Wu C, Shi J, Chen C et al (2008) Synthesis and optical properties of CuS nanowires fabricated by electrodeposition with anodic alumina membrane. Mater Lett 62:1074–1077. https://doi.org/10.1016/j.matlet.2007.07.046

    Article  CAS  Google Scholar 

  44. Tan C, Lu R, Xue P et al (2008) Synthesis of CuS nanoribbons templated by hydrogel. Mater Chem Phys J 112:500–503. https://doi.org/10.1016/j.matchemphys.2008.06.015

    Article  CAS  Google Scholar 

  45. Thongtem T, Phuruangrat A, Thongtem S (2009) Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process. Curr Appl Phys 9:195–200. https://doi.org/10.1016/j.cap.2008.01.011

    Article  Google Scholar 

  46. Zhu L, Xie Y, Zheng X et al (2004) Fabrication of novel urchin-like architecture and snowflake-like pattern CuS. J Cryst Growth 260:494–499. https://doi.org/10.1016/j.jcrysgro.2003.08.038

    Article  CAS  Google Scholar 

  47. Ross CA (1994) Electrodeposited multilayer thin films. Annu Rev Mater Sci 24:159–188. https://doi.org/10.1146/annurev.matsci.24.1.159

    Article  CAS  Google Scholar 

  48. Suryavanshi AP, Yu MF (2006) Probe-based electrochemical fabrication of freestanding Cu nanowire array. Appl Phys Lett 88:86–89. https://doi.org/10.1063/1.2177538

    Article  CAS  Google Scholar 

  49. Pandey RK, Sahu SN, Chandra S (1996) Handbook of Semiconductor electrodeposition. Taylor & Francis, New York NY

    Google Scholar 

  50. Zhang Q, Wang Q, Zhang S et al (2016) Electrodeposition in ionic liquids. ChemPhysChem 17:335–351. https://doi.org/10.1002/cphc.201500713

    Article  CAS  PubMed  Google Scholar 

  51. Mahalingam T, Sanjeeviraja C (1992) Characterization of electrodeposited copper sulphide thin films. Physica Status Solidi (a) 129:K89–K92. https://doi.org/10.1002/pssa.2211290232

    Article  CAS  Google Scholar 

  52. Ghahremaninezhad A, Asselin E, Dixon DG (2011) Electrodeposition and growth mechanism of copper sulfide nanowires. J Phys Chem C 115:9320–9334. https://doi.org/10.1021/jp108283z

    Article  CAS  Google Scholar 

  53. Zakir O, Ait Karra A, Idouhli R et al (2022) Fabrication and characterization of Ag- and Cu-doped TiO2 nanotubes (NTs) by in situ anodization method as an efficient photocatalyst. J Solid State Electrochem. https://doi.org/10.1007/s10008-022-05237-4

    Article  Google Scholar 

  54. Khadiri M, Elyaagoubi M, Idouhli R et al (2021) Characterization of Bi2Se3 prepared by electrodeposition. J Solid State Electrochem 25:479–487. https://doi.org/10.1007/s10008-020-04807-8

    Article  CAS  Google Scholar 

  55. Kang MS, Kim SK, Kim K, Kim JJ (2008) The influence of thiourea on copper electrodeposition: adsorbate identification and effect on electrochemical nucleation. Thin Solid Films 516:3761–3766. https://doi.org/10.1016/j.tsf.2007.06.069

    Article  CAS  Google Scholar 

  56. Hrynaszkiewicz TJ, Kozłowski J, Cieszyńska E, Krogulec T (1994) Determination of NiS, NiSe and PdS formation orders during electroreduction of thiocyanate, selenocyanate and thiourea complexes of Ni(II) and PD(II) at mercury electrodes. J Electroanal Chem 367:213–221. https://doi.org/10.1016/0022-0728(93)03045-Q

    Article  CAS  Google Scholar 

  57. Henríquez R, Froment M, Riveros G et al (2007) Electrodeposition of polyphasic films of zinc oxi sulfide from DMSO onto n-InP(100) and n-InP(111) single crystals in the presence of zinc salt, thiourea, and dissolved molecular oxygen. J Phys Chem C 111:6017–6023. https://doi.org/10.1021/jp068511g

    Article  CAS  Google Scholar 

  58. Dhasade SS, Patil JS, Kim JH et al (2012) Synthesis of CuS nanorods grown at room temperature by electrodeposition method. Mater Chem Phys 137:353–358. https://doi.org/10.1016/j.matchemphys.2012.09.033

    Article  CAS  Google Scholar 

  59. Conejeros S, Moreira IDPR, Alemany P, Canadell E (2014) Nature of holes, oxidation states, and hypervalency in covellite (cus). Inorg Chem 53:12402–12406. https://doi.org/10.1021/ic502436a

    Article  CAS  PubMed  Google Scholar 

  60. Safrani T, Jopp J, Golan Y (2015) A comparative study of the structure and optical properties of copper sulfide thin films chemically deposited on various substrates. J Mater Chem C 3:10715–10722. https://doi.org/10.1039/b000000x

    Article  Google Scholar 

  61. Shuai X, Shen W, Hou Z et al (2014) A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell. Nanoscale Res Lett 9:1–7. https://doi.org/10.1186/1556-276X-9-513

    Article  CAS  Google Scholar 

  62. Mernagh TP, Trudu AG (1993) A laser Raman microprobe study of some geologically important sulphide minerals. Chem Geol 103:113–127. https://doi.org/10.1016/0009-2541(93)90295-T

    Article  CAS  Google Scholar 

  63. Munce CG, Parker GK, Holt SA, Hope GA (2007) A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. Colloids Surf A 295:152–158. https://doi.org/10.1016/j.colsurfa.2006.08.045

    Article  CAS  Google Scholar 

  64. Page M, Niitsoo O, Itzhaik Y et al (2009) Copper sulfide as a light absorber in wet-chemical synthesized extremely thin absorber (ETA) solar cells. Energy Environ Sci 2:220–223. https://doi.org/10.1039/b813740d

    Article  CAS  Google Scholar 

  65. Chaki SH, Tailor JP, Deshpande MP (2014) Covellite CuS - single crystal growth by chemical vapour transport (CVT) technique and characterization. Mater Sci Semicond Process 27:577–585. https://doi.org/10.1016/j.mssp.2014.07.038

    Article  CAS  Google Scholar 

  66. Kar P, Farsinezhad S, Zhang X, Shankar K (2014) Anodic Cu2S and CuS nanorod and nanowall arrays: preparation, properties and application in CO2 photoreduction. Nanoscale 6:14305–14318. https://doi.org/10.1039/c4nr05371k

    Article  CAS  PubMed  Google Scholar 

  67. Bhat KS, Nagaraja HS (2021) Electrochemical hydrogen-storage performance of copper sulfide micro-hexagons. Int J Hydrogen Energy 46:5530–5536. https://doi.org/10.1016/j.ijhydene.2020.11.133

    Article  CAS  Google Scholar 

  68. Zakir O, Idouhli R, Elyaagoubi M et al (2020) Fabrication of TiO2 nanotube by electrochemical anodization : toward photocatalytic application. J Nanomater 2020

  69. Roy P, Srivastava SK (2006) Hydrothermal growth of CuS nanowires from Cu - dithiooxamide, a novel single-source precursor. Cryst Growth Des 6:6–11

    Article  Google Scholar 

  70. Roy P, Mondal K, Srivastava SK (2008) Synthesis of twinned CuS nanorods by a simple wet chemical method. Cryst Growth Des 8:1530–1534. https://doi.org/10.1021/cg700780k

    Article  CAS  Google Scholar 

  71. Feng Z, Cheng X, Dong C et al (2010) Passivity of 316L stainless steel in borate buffer solution studied by Mott-Schottky analysis, atomic absorption spectrometry and X-ray photoelectron spectroscopy. Corros Sci 52:3646–3653. https://doi.org/10.1016/j.corsci.2010.07.013

    Article  CAS  Google Scholar 

  72. Toor I-H (2011) Mott-Schottky analysis of passive films on Si containing stainless steel alloys. J Electrochem Soc 158:C391. https://doi.org/10.1149/2.083111jes

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Center of Analyses and Characterization (CAC) of the University of Cadi Ayyad, Marrakech, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ait-karra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait-karra, A., Zakir, O., Ait baha, A. et al. Electrodeposition and characterization of copper sulfide (CuS) thin film: towards an understanding of the growth mechanism. J Solid State Electrochem 27, 2051–2065 (2023). https://doi.org/10.1007/s10008-023-05471-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05471-4

Keywords

Navigation