Skip to main content

Advertisement

Log in

Ab initio study of structural, mechanical and electronic properties of 3d transitional metal carbide in cubic rocksalt (rs), zincblende (zb), and cesium chloride (cc) structures by using LDA and GGA Approximation

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d orbitals of the metal. Most 3d TMCs exhibit metallic properties, excluding zb-TiC and zb-FeC in all phases. An inverse correlation between elastic constant C44 and electronic states near the Fermi level (EF) emerges, guiding applications and design. This study efficiently uncovers 3d TMC properties, offering insights for applications and design.

Methods

We employed the Vienna ab initio Simulation software (VASP) to perform computations based on density functional theory (DFT). Our approach incorporated both the projector augmented wave (PAW) and PW91 general gradient approximation (GGA) methods within the local density approximation (LDA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets can be obtained from the corresponding author, through email request. Reasonable request.

References

  1. Khatri NJ, Szymanski BB, Dumre JG, Amar D, Gall S, Khare SV (2022) J Alloys Compd 891(25):161866

    CAS  Google Scholar 

  2. Guillermet AF, Haglund J, Grimvall G, Smith M (1992) Phys Rev B 45:11557

    Google Scholar 

  3. Schwarz K (1987) Solid State. Mater Sci 13:211

    CAS  Google Scholar 

  4. Schwarz K (1977) J Phys C 10:195

    CAS  Google Scholar 

  5. Blaha P, Schwarz K (1983) Int J Quantum Chem 23(4):1535–1552. https://doi.org/10.1002/qua.560230435

  6. Gupta M, Freeman AJ (1976) Phys Rev B 14:5202

    Google Scholar 

  7. Klein PM, Papaconstantopoulos DA, Boyer LL (1980) Phys Rev B 22:1946

    CAS  Google Scholar 

  8. Vies F, Sousa C, Liu P, Rodriguez JA, Illas F (2005) A systematic density functional theory study of the electronic structure of bulk and (001) surface of transition-metals carbides. J Chem Phys 122:174709

    Google Scholar 

  9. Stefan PM, Shek ML, Lindau I, Spicer WE, Johansson LI, Herman F, Kasowski RV, Brogen G (1984) Photoemission study of WC (0001). Phys Rev B: Condens. Matter Mater Phys 29:5423–5444

    CAS  Google Scholar 

  10. Johansson LI, Hagstrm AL, Jacobson BE, Hagstrm SBM (1977) ESCA studies of core level shifts and valence band structure in nonstoichiometric single crystals of titanium carbide. J Electron Spectrosc Relat Phenom 10:259–271

    CAS  Google Scholar 

  11. Amriou T, Bouhafs B, Bresson S, Khelifa B, Methieu C (2005) Physica B 325:46–56

    Google Scholar 

  12. Smith GD, Patel SJ (2005) The role of niobium in wrought precipitation-hardened nickel-base alloys Proc. Loria EA (ed) Superalloys 718, 625, 706 and Various Derivatives (TMS). p 1351. https://www.tms.org/Superalloys/10.7449/2005/Superalloys_2005_135_154.pdf

  13. Sabol Gand Stickler R (1969) Microstructure of nickel-based superalloys-review article Phys. Status Solidi 39:11

    Google Scholar 

  14. Jena A, Chaturvedi M (1984) The role of alloying elements in the design of nickel-base superalloys. J Mater Sci 19:3121

    CAS  Google Scholar 

  15. Sims CT (1984) A history of superalloy metallurgy for superalloy metallurgists. Superalloys 399–419. https://www.semanticscholar.org/paper/A-History-of-Superalloy-Metallurgy-for-Superalloy-Sims/fe6e0258a494591cabaf9c2ee84afecd3708199b

  16. Liu ZTY, Zhou X, Khare SV, Gall D (2014) J Phys Condens Matter 26:025404. https://doi.org/10.1088/0953-8984/26/2/025404

    Article  CAS  PubMed  Google Scholar 

  17. Haglund J, Grimvall G, Jarlborg T, Guillermet AF (1991) Phys Rev B 43:14400

    CAS  Google Scholar 

  18. Korir KK, Amolo GO, Makau NW, Joubert DP (2011) Diamond Relat Mater 20:157

    CAS  Google Scholar 

  19. Fernandez GA, Grimvall G (1989) Phys Rev B 40:10582

    Google Scholar 

  20. Kohn W, Sham LJ (1965) Phys Rev 140:1133

    Google Scholar 

  21. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    CAS  Google Scholar 

  22. Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15

    CAS  Google Scholar 

  23. Kresse G, Hafner J (1993) Phys Rev B 48:13115

    CAS  Google Scholar 

  24. Blchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. https://doi.org/10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  25. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmentedwave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/PhysRevB.59.1758

    Article  CAS  Google Scholar 

  26. Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566

    CAS  Google Scholar 

  27. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671

    CAS  Google Scholar 

  28. Marques MAL, Vidal J, Oliveira MJT, Reining L, Botti S (2011) Density-based mixing parameter for hybrid functionals. Phys Rev B: Condens Matter Mater Phys 83:35119

    Google Scholar 

  29. Peverati R, Truhlar DG (2012) Performance of the M11-L density functional for bandgaps and lattice constants of unary and binary semiconductors. J Chem Phys 136:134704

    PubMed  PubMed Central  Google Scholar 

  30. Monkhorst HJ, Pack JD (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  31. Pack JD, Monkhorst HJ (1977) Special points for Brillioun-zone integrations - reply. Phys Rev B 16:1748–1749. https://doi.org/10.1103/PhysRevB.16.1748

    Article  Google Scholar 

  32. Efthimiopoulos l, Khatri I, Liu ZTY, Khare SV, Sarin P, Tsurkan V, Loidl A, Zhang D, Wang Y (2018) Phys Rev B 97:184435. https://journals.aps.org/prb/abstract/10.1103/PhysRevB.97.184435

  33. Adhikari V, Liu ZTY, Szymanski NJ, Khatri I, Gall D, Sarin P, Khare SV (2018) J Phys Chem Solids 120:197–206

    CAS  Google Scholar 

  34. Murnaghan FD (1944) Proc Natl Acad Sci USA 30:244

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu HZ, Li DH, Peng F, Gao T, Cheng XL (2008) Comput Mater Sci 44:774

    CAS  Google Scholar 

  36. Mehl MJ, Osburn JE, Papaconstantopoulos DA, Klein BM (1990) Phys Rev B 41:10311

    CAS  Google Scholar 

  37. Patil SKR, Khare SV, Tuttle BR, Bording JK, Kodambaka S (2006) Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys Rev B Condens Matter 73:1–8. https://doi.org/10.1103/PhysRevB.73.104118

    Article  CAS  Google Scholar 

  38. Teter DM (1998) MRS Bull 23:22

    CAS  Google Scholar 

  39. Chen XQ, Niu HY, Li DZ, Li YY (2011) Intermetallics 19:1275

    CAS  Google Scholar 

  40. Tian Y, Xu B, Zhao Z (2012) Int J Refract Met Hard Mater 33:93

    CAS  Google Scholar 

  41. Deus P, Schneider HA (1983) Estimation of the debye temperature of diamond-like semiconducting compounds from bulk modul and microhardness. Cryst Res Technol 18:491–500. https://doi.org/10.1002/crat.2170180410

    Article  CAS  Google Scholar 

  42. Arnaldsson Tang Chill W, Henkelman S, Bader GA. (n.d.) Charge Anal. http://theory.cm.utexas.edu/bader/.

  43. Henkelman G, Arnaldsson A, Jonsson H (2006) A fast and robust algorithm for Bader decomposition of charge density. Comput Mater Sci 36:354–360. https://doi.org/10.1016/j.commatsci.2005.04.010

    Article  Google Scholar 

  44. Sanville E, Kenny SD, Smith R, Henkelman G (2007) Improved grid-based algorithm for Bader charge allocation. J Comput Chem 28:899–908. https://doi.org/10.1002/jcc.20575

    Article  CAS  PubMed  Google Scholar 

  45. Tang W, Sanville E, Henkelman G (2009) A grid-based Bader analysis algorithm without lattice bias. J Phys Condens Matter 21:84204. https://doi.org/10.1088/0953-8984/21/8/084204

    Article  CAS  Google Scholar 

  46. Bader RFW (1990) Atoms in Molecules: a Quantum Theory. Oxford University Press, New York

    Google Scholar 

  47. Bieglerkonig FW, Bader RFW, Tang TH (1982) Calculation of the average properties of atoms in molecules 2. J Comput Chem 3:317–328. https://doi.org/10.1002/Jcc.540030306

    Article  Google Scholar 

  48. Blchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for brillouinzoneintegrations. Phys Rev B 49:16223–16233. https://doi.org/10.1103/PhysRevB.49.16223

    Article  Google Scholar 

  49. Togo A, Tanaka I (2015) First principles phonon calculations in materials science. Scripta Mater 108:1–5. https://doi.org/10.1016/J.SCRIPTAMAT.2015.07.021

    Article  CAS  Google Scholar 

  50. Guillermet AF, Grimvall G (1989) Phys Rev B 40:10582

    CAS  Google Scholar 

  51. Nowotny H, Auer-Welsbach H (1961) Uber das Scandiumcarbid. Onatshefte fur Chemie 92:789–793

    CAS  Google Scholar 

  52. Villars PV, Calvert LD (1985) Pearson’s Handbook of Crys tallographic Data for Interrnetallic Phases. American Society for Metals, Metals Park, OH

    Google Scholar 

  53. Nakamura K, Yashima M (2008) Crystal structure of NaCl type transition metal monocarbides MC, a neutron powder diffraction study. Mater Sci Eng B 148:69–72

    CAS  Google Scholar 

  54. Zhukov VP, Gubanov VA, Jepsen O, Christensen NE, Andersen OK (1988) J Phys Chem Solids 49:841

    CAS  Google Scholar 

  55. Wang J, Chen X, Yang N, Fang Z (1993) Formation of NaCltype Cr carbide by carbon ion implantation. Appl Phys A: Solids Surf 56:307–309

    Google Scholar 

  56. Zhang Y, Li J, Zou L, Xiang S (2002) Solid State Commun 121:411

    CAS  Google Scholar 

  57. Cadeville MC, Lapierre MF (1972) Etude aux rayons X de la solution solide cobalt?carbone. Scr Metall 6:399–404

    CAS  Google Scholar 

  58. Gibson JS, Uddin J, Cundari TR, Bodiford NK, Wilson AK (2010) First-principle study of structure and stability of nickel carbides. J. Phys.: Condens. Matter 22:445503

    PubMed  Google Scholar 

  59. Quesne MG, Roldan A, de Leeuw NH, Catlow CRA (2018) Phys Chem Chem Phys 20:6905

    CAS  PubMed  Google Scholar 

  60. Wu L, Yao T, Wang Y, Zhang J, Xiao F, Liao B (2013) J Alloys Compd 548:60–64. https://doi.org/10.1016/j.commatsci.2023.112298

  61. Maibam J, Indrajit Sharma B, Bhattacharjee R, Thapa RK (2011) Brojen Singh Phys. B 406:4041

    CAS  Google Scholar 

  62. Gilman JJ, Roberts BW (1961) Elastic Constants of TiC and TiB2. J. Appl. Phys. 32:1405–1405

    CAS  Google Scholar 

  63. Nye JF (1985) Physical Properties of Crystals: Their Representation by Tensors and Matrices, Clarendon Press, 1985, http://books.google.com/books?id=ugwqluVB44C.

  64. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 9:224104. https://doi.org/10.1103/PhysRevB.90.224104

    Article  CAS  Google Scholar 

  65. Ivanovskii AL (2012) Prog Mater Sci 57:184

    CAS  Google Scholar 

  66. Haines J, Leger JM, Bocquillon G (2001) Annu Rev Mater Sci 31:1

    CAS  Google Scholar 

  67. Miao NH, Sa BS, Zhou JA, Sun ZM (2011) Comput Mater Sci 50:1559

    CAS  Google Scholar 

  68. Teber A, Schoenstein F, Tetard F, Abdellaoui M, Jouini N (2012) Effect of SPS process sintering on the microstructure and mechanical properties of nanocrystalline TiC for tools application. Int J Refract Metals Hard Mater 30(1):64–70. https://doi.org/10.1016/j.ijrmhm.2011.06.013

    Article  CAS  Google Scholar 

  69. Gschneidner KA Jr (1975) In scandium. Its occurrence, chemistry, physics, metallurgy, biology and technology. Horowitz CT (ed) Academic Press, London, pp 152–322

  70. Abbas Z, Fatima K, Jaffery SHA, Ali A, Raza HH, Muhammad S, Algarni H, Hussain S, Jung J (2022) Ab-initio study of Nb-based complex materials: A new class of materials for optoelectronic applications. J Comput Sci 63:101791

    Google Scholar 

  71. Lindemann F (1910) Phys Z 11:609

    CAS  Google Scholar 

  72. Allred AL, Rochow EG (1958) A scale of electronegativity based on electrostatic force. J Lnorg Nucl Chem 5:264–268. https://doi.org/10.1016/0022-1902(58)80003-2

    Article  CAS  Google Scholar 

  73. Chen JG (1997) Surf Sci Rep 30:1

    CAS  Google Scholar 

  74. Montoya JA, Hernandez AD, Sanloup C, Gregoryanz E, Scandolo S (2007) Appl Phys Lett 90:011909

    Google Scholar 

  75. Wang YX, Arai M, Sasaki T (2007) Appl Phys Lett 90:061922

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Anbar University for providing necessary facilities to complete this work.

Funding

This work is supported by a grant of Anbar University.

Author information

Authors and Affiliations

Authors

Contributions

E.S. contributed to the carry out the simulations and formal analyses. E.S. and H.A. did writing original draft, and writing the manuscript. E.S and A.K. were responsible for calculations, and making the graphs, I.A. and I.I were responsible for editing the paper.

Corresponding author

Correspondence to Ehsan H. Sabbar.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

There is no conflict of interest in the current work.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 619 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabbar, E.H., Al-Zubaidi, H.A., Kurdi, A.H. et al. Ab initio study of structural, mechanical and electronic properties of 3d transitional metal carbide in cubic rocksalt (rs), zincblende (zb), and cesium chloride (cc) structures by using LDA and GGA Approximation. J Mol Model 29, 302 (2023). https://doi.org/10.1007/s00894-023-05698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-023-05698-y

Keywords

Navigation