Skip to main content
Log in

A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn2+ and Cys/His

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A facile and dual fluorescent chemosensor (named 7-IDF) based on a phenylalanine derivative with an indole group was designed and synthesized. 7-IDF can selectively and sensitively detect Zn2+ via obvious fluorescence enhancement in an aqueous solution. Remarkably, the 7-IDF-Zn complex with blue luminescence has higher selectivity toward cysteine (Cys) and histidine (His) than for other amino acids. Intriguingly, 7-IDF can also be used as an excellent probe to detect Zn2+ in real water samples. Moreover, 7-IDF and 7-IDF-Zn possess excellent biocompatibility and cell permeability, and 7-IDF can consecutively detect Zn2+ and Cys/His in Hela cells through fluorescence imaging experiments. This study suggests that the phenylalanine-based chemosensor possesses great potential applications for the sequential detection of Zn2+ and Cys/His in biosystems.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Jang HJ, Kim A, Jung JM, Lee M, Lim MH, Kim C (2018) Bull Korean Chem Soc 39:1373–1379

    Article  CAS  Google Scholar 

  2. Wen X, Wang Q, Fan Z (2018) J Lumin 194:366–373

    Article  CAS  Google Scholar 

  3. Zhang T-T, Wang F-W, Li M-M, Liu J-T, Miao J-Y, Zhao B-X (2013) Sens Actuators B-Chem 186:755–760

    Article  CAS  Google Scholar 

  4. Du K, Niu S, Qiao L, Dou Y, Zhu Q, Chen X, Zhang P (2017) RSC Adv 7:40615–40620

    Article  CAS  Google Scholar 

  5. Budri M, Naik G, Patil S, Kadolkar P, Gudasi K, Inamdar S (2020) J Photochem Photobiol A Chem 390:112298

    Article  CAS  Google Scholar 

  6. Cuajungco MP, Lees GJ (1997) Brain Res Rev 23:219–236

    Article  CAS  PubMed  Google Scholar 

  7. Takeda A (2001) Biometals 14:343–351

    Article  CAS  PubMed  Google Scholar 

  8. Frederickson CJ, Koh J-Y, Bush AI (2005) Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  9. Berg JM, Shi Y (1996) Science 271:1081

    Article  CAS  PubMed  Google Scholar 

  10. Tang YT, Cloquet C, Deng TH, Sterckeman T, Echevarria G, Yang WJ, Morel JL, Qiu RL (2016) Environ Sci Technol 50:8020–8027

    Article  CAS  PubMed  Google Scholar 

  11. Yue Y, Dong Q, Zhang Y, Sun Y, Gong Y (2015) Anal Methods 7:5661–5666

    Article  CAS  Google Scholar 

  12. Voegelin A, Pfister S, Scheinost AC, Marcus MA, Kretzschmar R (2005) Environ Sci Technol 39:6616–6623

    Article  CAS  PubMed  Google Scholar 

  13. Ouyang R, Zhu Z, Tatum CE, Chambers JQ, Xue ZL (2011) J Electroanal Chem (Lausanne) 656:78–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Antunes GA, dos Santos HS, da Silva YP, Silva MM, Piatnicki CMS, Samios D (2017) Energ Fuel 31:2944–2950

    Article  CAS  Google Scholar 

  15. Talmard C, Bouzan A, Faller P (2007) Biochemistry 46:13658–13666

    Article  CAS  Google Scholar 

  16. Wan Q, Ahmad MF, Fairman J, Gorzelle B, de la Fuente M, Dealwis C, Maguire ME (2011) Structure 19:700–710

    Article  CAS  PubMed Central  Google Scholar 

  17. Yan XJ, Gao YY, Liu HB, Qiao X, Xie CZ, Li QZ, Gao WZ, Sun HB, Xu JY (2021) Spectrochim Acta A Mol Biomol Spectrosc 261:120067

    Article  CAS  PubMed  Google Scholar 

  18. Yao H, Wang J, Zhou Q, Guan XW, Fan YQ, Zhang YM, Wei TB, Lin Q (2018) Soft Matter 14:8390–8394

    Article  CAS  PubMed  Google Scholar 

  19. Wang KP, Jin ZH, Shang HS, Lv CD, Zhang Q, Chen S, Hu ZQ (2017) J Fluoresc 27:629–633

    Article  CAS  PubMed  Google Scholar 

  20. Liu LZ, Wang L, Yu M, Zhao Q, Zhang Y, Sun YX, Dong WK (2019) Spectrochim Acta A Mol Biomol Spectrosc 222:117209

    Article  CAS  PubMed  Google Scholar 

  21. Tan N-D, Yin J-H, Pu G, Yuan Y, Meng L, Xu N (2016) Chem Phys Lett 666:68–72

    Article  CAS  Google Scholar 

  22. Xu T, Duan H, Wang X, Meng X, Bu J (2015) Spectrochim Acta A Mol Biomol Spectrosc 138:603–608

    Article  CAS  PubMed  Google Scholar 

  23. Li CR, Li SL, Yang ZY (2017) Spectrochim Acta A Mol Biomol Spectrosc 174:214–222

    Article  CAS  PubMed  Google Scholar 

  24. Kim H, Kang J, Kim KB, Song EJ, Kim C (2014) Spectrochim Acta A Mol Biomol Spectrosc 118:883–887

    Article  CAS  PubMed  Google Scholar 

  25. Ma Y, Wang F, Kambam S, Chen X (2013) Sensor Actuators B-Chem 188:1116–1122

    Article  CAS  Google Scholar 

  26. Huerta-Aguilar CA, Pandiyan T, Singh N, Jayanthi N (2015) Spectrochim Acta A Mol Biomol Spectrosc 146:142–150

    Article  CAS  PubMed  Google Scholar 

  27. Han Z-X, Zhang X-B, Li Z, Gong Y-J, Wu X-Y, Jin Z, He C-M, Jian L-X, Zhang J, Shen G-L, Yu R-Q (2010) Anal Chem 82:3108–3113

    Article  CAS  PubMed  Google Scholar 

  28. Williams NJ, Gan W, Reibenspies JH, Hancock RD (2009) Inorg Chem 48:1407–1415

    Article  CAS  PubMed  Google Scholar 

  29. Cui M, Xia L, Gu Y, Wang P (2020) New J Chem 44:973–980

    Article  CAS  Google Scholar 

  30. Yang S, Jiang W, Ren L, Yuan Y, Zhang B, Luo Q, Guo Q, Bouchard LS, Liu M, Zhou X (2016) Anal Chem 88:5835–5840

    Article  CAS  PubMed  Google Scholar 

  31. Sasmal M, Maiti TK, Bhattacharyya TK (2015) IEEE T Nanobiosci 14:634–640

    Article  Google Scholar 

  32. Xie Y, Yan L, Li J (2019) Appl Spectrosc 73:794–800

    Article  CAS  PubMed  Google Scholar 

  33. Yang X, He L, Xu K, Lin W (2017) Anal Chim Acta 981:86–93

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Shao X, Wang Y, Pan F, Kang R, Peng F, Huang Z, Zhang W, Zhao W (2015) Chem Commun (Camb) 51:4245–4248

    Article  CAS  PubMed  Google Scholar 

  35. Zheng X, Yao T, Zhu Y, Shi S (2015) Biosens Bioelectron 66:103–108

    Article  CAS  PubMed  Google Scholar 

  36. Jia X, Niu C, He Y, Sun Y, Liu H (2018) J Fluoresc 28:1059–1064

    Article  CAS  PubMed  Google Scholar 

  37. He Y, Wang X, Zhu J, Zhong S, Song G (2012) Analyst 137:4005–4009

    Article  CAS  PubMed  Google Scholar 

  38. Zhang S, Yang C, Zhu W, Zeng B, Yang Y, Xu Y, Qian X (2012) Org Biomol Chem 10:1653–1658

    Article  CAS  PubMed  Google Scholar 

  39. Hu L, Zheng T, Song Y, Fan J, Li H, Zhang R, Sun Y (2021) Anal Biochem 620:114138

    Article  CAS  PubMed  Google Scholar 

  40. Xu L, Xu Y, Zhu W, Zeng B, Yang C, Wu B, Qian X (2011) Org Biomol Chem 9:8284

    Article  CAS  PubMed  Google Scholar 

  41. Choi JY, Kim D, Yoon J (2013) Dyes Pigm 96:176–179

    Article  CAS  Google Scholar 

  42. Ambrosi G, Fanelli M, Paoli P, Formica M, Paderni D, Rossi P, Micheloni M, Giorgi G, Fusi L (2020) Dalton Trans 49:7496–7506

    Article  CAS  PubMed  Google Scholar 

  43. Pourfallah G, Lou X (2016) Sens Actuators B-Chem 233:379–387

    Article  CAS  Google Scholar 

  44. Shyamal M, Mazumdar P, Maity S, Sahoo GP, Salgado-Morán G, Misra A (2016) J Phys Chem A 120:210–220

    Article  CAS  PubMed  Google Scholar 

  45. Park GJ, Lee JJ, You GR, Nguyen L, Noh I, Kim C (2016) Sens Actuat B-Chem 223:509–519

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21807058) and the Research Foundation of Education Bureau of Hunan Province (21A0279).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Juan Wang or Ying-Wu Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1472 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, QY., Wei, CW., Wang, XJ. et al. A fluorescent probe based on a phenylalanine derivative is capable of sequential detection of Zn2+ and Cys/His. J Biol Inorg Chem 28, 205–211 (2023). https://doi.org/10.1007/s00775-022-01984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-022-01984-x

Keywords

Navigation