Skip to main content
Log in

Electrochemical determination of acetamiprid using PEDOT sensing coating functionalized with carbon quantum dots and Prussian blue nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-mode electrochemical biosensor for acetamiprid detection was proposed for the first time based on carbon quantum dots/Prussian blue (CQDs/PB)-functionalized poly(3,4-ethylenedioxythiphene) (PEDOT) nanocomposite. The nanocomposite with spherical stacking nanostructure showed high surface area, excellent catalytic ability, and cycling stability. The biosensor can be effortlessly constructed after the immobilization of acetamiprid aptamer. The concentration of acetamiprid can be determined by differential pulse voltammetry (DPV) based on its signal change deduced from the pristine PB. With the capture of acetamiprid, the response current (I-T) signal generated by hydrogen peroxide catalysis from the biosensor can also been used to establish the method for monitoring acetamiprid. The dual-mode biosensor showed a wide linear range from 10−12 g mL−1 to 10−6 g mL−1, low detection limits of 6.84 × 10−13 g mL−1 and 4.99 × 10−13 g mL−1, and ultrafast detection time of 25 s and 5 s through DPV and I-T mode, respectively. The biosensor possessed excellent selectivity and stability. More importantly, the biosensor was successfully applied to detect acetamiprid residues in vegetables, proving a promising approach for routine detection of pesticide in real samples.

Graphical abstract

The biosensor based on PEDOT/CQDs/PB for acetamiprid can be effortlessly constructed through both the increase of differential pulse voltammetry (DPV) signal change deduced by the pristine PB and the decrease of the response current (I-T) signal of the reduction of hydrogen peroxide catalyzed by PEDOT/CQDs/PB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li H, Qiao Y, Li J, Fang H, Fan D, Wang W (2016) A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens Bioelectron 77(77):378–384

    Article  CAS  Google Scholar 

  2. Balsebre A, Baez ME, Martinez J, Fuentes E (2018) Matrix solid-phase dispersion associated to gas chromatography for the assessment in honey bee of a group of pesticides of concern in the apicultural field. J Chromatogr A 1567:47–54

    Article  CAS  Google Scholar 

  3. Hirotaka O, Msahiro O, Kazuhiko A, Yoko K, Shinjiro H (2002) Determination of acetamiprid, imidacloprid, and nitenpyram residues in vegetables and fruits by high-performance liquid chromatography with diode-array detection. J Agr Food Chem 50(16):4464–4467

    Article  Google Scholar 

  4. Faraji M, Noorbakhsh R, Shafieyan H, Ramezani M (2018) Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry. Food Chem 240:634–641

    Article  CAS  Google Scholar 

  5. Bera MK, Behera L, Mohapatra S (2021) A fluorescence turn-down-up detection of Cu2+ and pesticide quinalphos using carbon quantum dot integrated UiO-66-NH2. Colloids Surf A 624(2021):126792

    Article  CAS  Google Scholar 

  6. Vasilescu A, Marty J (2016) Electrochemical aptasensors for the assessment of food quality and safety. TrAC Trends Anal Chem 11(024):60–70

    Article  Google Scholar 

  7. Kong X, Zhang B, Wang J (2021) Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: a review. J Agric Food Chem 69(2021):6735–6754

    Article  CAS  Google Scholar 

  8. Lu H, Wang H, Yang L, Zhou Y, Xu L, Hui N, Wang D (2021) A sensitive electrochemical sensor based on metal cobalt wrapped conducting polymer polypyrrole nanocone arrays for the assay of nitrite. Microchim Acta 189(1):26

    Article  Google Scholar 

  9. Hui N, Wang J, Wang D, Wang P, Luo X, Lv S (2022) An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosens Bioelectron 200:113921

    Article  CAS  Google Scholar 

  10. Li Y, Li Y, Hong M, Bin Q, Lin Z, Lin Z, Cai Z, Chen G (2013) Highly sensitive protein molecularly imprinted electro-chemical sensor based on gold microdendrites electrode and prussian blue mediatedamplification. Biosens Bioelectron 42C(Complete):612–617

  11. Carneiro S V, Queiroz V R, Cr Uz A, Fechine L, Fechine P (2019) Sensing strategy based on carbon quantum dots obtained from riboflavin for the identification of pesticides. Sens Actuators B 301(August):127149

  12. Jiang Y, Zhang X, Shan C, Hua S, Zhang Q, Bai X, Dan L, Niu L (2011) Functionalization of graphene with electrodeposited Prussian blue towards amperometric sensing application. Talanta 85(1):76–81

    Article  CAS  Google Scholar 

  13. Yang L, Wang J, Lü H, Hui N (2021) Electrochemical sensor based on Prussian blue/multi-walled carbon nanotubes functionalized polypyrrole nanowire arrays for hydrogen peroxide and microRNA detection. Microchim Acta 188(1):1–12

    Article  Google Scholar 

  14. Wang L, Tricard S, Yue P, Zhao J, Fang J (2016) Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: application for amperometric determination of l-cysteine. Biosens Bioelectron 77(2016):1112–1118

    Article  CAS  Google Scholar 

  15. Su A, No A, Ma B (2021) Enzyme-free detection of hydrogen peroxide with a hybrid transducing system based on sodium carboxymethyl cellulose, poly(3,4-ethylenedioxythiophene) and Prussian blue nanoparticles. Anal Chim Acta 1172(2021):338664

    Google Scholar 

  16. Jin E, Lu X, Cui L, Chao D, Wang C (2010) Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochim Acta 55(24):7230–7234

    Article  CAS  Google Scholar 

  17. Wang L, Ye Y, Lu X, Wu Y, Sun L, Tan H, Xu F, Song Y (2013) Prussian blue nanocubes on nitrobenzene-functionalized reduced graphene oxide and its application for H2O2 biosensing. Electrochim Acta 114(2013):223–232

    Article  CAS  Google Scholar 

  18. Wang C, Li Z, Guo Z, Xu J, Wang H, Zhai K, Xin Z (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169(1–2):1–6

    Article  CAS  Google Scholar 

  19. Xu E, Yang H, Li P, Wang Z, Liu S (2020) Dual-mode detection of PARP-1 by fluorescence and chemiluminescence. Sens Actuators B 330(20):129288

    Google Scholar 

  20. Guo CX, Zhao D, Zhao Q, Peng W, Lu X (2014) Na+-functionalized carbon quantum dots: a new draw solute in forward osmosis for seawater desalination. Chem Commun 50(55):7318–7321

    Article  CAS  Google Scholar 

  21. Hui N, Wang W, Xu G, Luo X (2015) Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J Mater Chem B 3(4):556–561

    Article  CAS  Google Scholar 

  22. Wang J, Wang D, Hui N (2020) A low fouling electrochemical biosensor based on the zwitterionic polypeptide doped conducting polymer PEDOT for breast cancer marker BRCA1 detection. Bioelectrochemistry 136:107595

    Article  CAS  Google Scholar 

  23. Cao L, Liu Y, Zhang B, Lu L (2010) In situ controllable growth of Prussian blue nanocubes on reduced graphene oxide: facile synthesis and their application as enhanced nanoelectrocatalyst for H2O2 reduction. ACS Appl Mater Interfaces 2(8):2339–2346

    Article  CAS  Google Scholar 

  24. Martindale B, Hutton G, Caputo CA, Reisner E (2015) Solar hydrogen production using carbon quantum dots and a molecular nickel catalyst. J Am Chem Soc 137(18):6018–6025

    Article  CAS  Google Scholar 

  25. He Y, Zhou X, Zhang X, Ma L, Jiang Y, Gao J (2020) Self-reducing Prussian blue onTi3C2Tx MXene nanosheets as a dual-functional nanohybrid for hydrogen peroxide and pesticide sensing. Ind Eng Chem Res 59(35):15556–15564

    Article  CAS  Google Scholar 

  26. Madrakian T, Maleki S, Gilak S, Afkhami A (2017) Turn-off fluorescence of amino-functionalized carbon quantum dots as effective fluorescent probes for determination of isotretinoin. Sens Actuators B 247(03):428–435

    Article  CAS  Google Scholar 

  27. Ozeki T, Watanbe I, Ikeda S (1987) Study of the prussian blue/prussian white redox reaction by cyclic voltammothermometry. J Electroanal Chem 236(1–2):209–218

    Article  CAS  Google Scholar 

  28. Oghli A, Soleymanpour A (2021) Pencil graphite electrode modified with nitrogen-doped graphene and molecular imprinted polyacrylamide/sol-gel as an ultrasensitive electrochemical sensor for the determination of fexofenadine in biological media. Biochem Eng J 167:107920

    Article  CAS  Google Scholar 

  29. Xue Q, Fang X, Dong T, Pei C, Jian L, Jin G (2019) Ultrasensitive “signal-on” electrochemical aptasensor for assay of acetamiprid residues based on copper-centered metal-organic frameworks. Anal Chim Acta 1050(2018):51–59

    Google Scholar 

  30. Rapini R, Cincinelli A, Marrazza G (2016) Acetamiprid multidetection by disposable electrochemical DNA aptasensor. Talanta 161:15–21

    Article  CAS  Google Scholar 

  31. Xiao S, Jian S, Yao Y, Hui L, Jing H, Ye G (2020) Novel electrochemical aptasensor with dual signal amplification strategy for detection of acetamiprid. Sci Total Environ 705:135905

    Article  Google Scholar 

  32. Ye G, Feng Y, Yao Y, Jian L, Shu C, Hao D (2021) Novel Au-tetrahedral aptamer nanostructure for the electrochemiluminescence detection of acetamiprid. J Hazard Mater 401:123794

    Article  Google Scholar 

  33. Na S, Yuan D, Zhe T, Hongjie Y, Xiu H, Ming W (2018) Development of an upconversion fluorescence DNA probe for the detection of acetamiprid by magnetic nanoparticles separation. Food Chem 258:289–294

    Google Scholar 

  34. Qian L, Juan H, Xiao D, Jing Q, Nan H, Tian Y, Han M, Kun W (2016) Resonance energy transfer from CdTe quantum dots to gold nanorods using MWCNTs/rGO nanoribbons as efficient signal amplifier for fabricating visible-light-driven “on-off-on” photoelectrochemical acetamiprid aptasensor. Sens Actuators, B 235:647–654

    Article  Google Scholar 

  35. Hassan OA, Soleymanpour, (2021) Pencil graphite electrode modified with nitrogen-doped graphene and molecular imprinted polyacrylamide/sol-gel as an ultrasensitive electrochemical sensor for the determination of fexofenadine in biological media. Biochem Eng J 167:107920

    Article  Google Scholar 

  36. Rouhani M, Soleymanpour, (2020) Preparation of Dawson heteropolyacid-embedded silver nanoparticles/graphene oxide nanocomposite thin film used to modify pencil graphite electrode as a sensor for trace electrochemical sensing of levodopa. Mater Sci Eng C 117:111287

    Article  CAS  Google Scholar 

  37. Tang X, Li X, Ma D, Lu L, Qu B (2018) A label-free triplex-to-G-qadruplex molecular switch for sensitive fluorescent detection of acetamiprid. Talanta 025(18):30717–30713

    Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (21705088), Shandong Provincial Key R&D Plan (Major Scientific and Technological Innovation Project) (2022CXGC010611, 2022CXGC010401), and Shandong Provincial Peanut Industry Technology System Project (SDAIT-04–09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiasheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2102 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, S., Wang, D. & Wang, J. Electrochemical determination of acetamiprid using PEDOT sensing coating functionalized with carbon quantum dots and Prussian blue nanoparticles. Microchim Acta 189, 341 (2022). https://doi.org/10.1007/s00604-022-05434-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05434-y

Keywords

Navigation