Skip to main content
Log in

RF-MEMS switches for a full control of the propagating modes in uniplanar microwave circuits and their application to reconfigurable multimodal microwave filters

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, new RF-MEMS switch configurations are proposed to enable control of the propagating (even and odd) modes in multimodal CPW transmission structures. Specifically, a switchable air bridge (a switchable short-circuit for the CPW odd mode) and switchable asymmetric shunt impedances (for transferring energy between modes) are studied and implemented using bridge-type and cantilever-type ohmic-contact switches, respectively. The switchable air bridge is based in a novel double ohmic-contact bridge-type structure. Optimized-shape suspension configurations, namely folded-beam or diagonal-beam for bridge-type switches, and straight-shaped or semicircular-shaped for cantilever-type switches, are used to obtain robust structures against fabrication-stress gradients. The switches are modelled using a coupled-field 3D finite-element mechanical analysis showing a low to moderate pull-in voltage. The fabricated switches are experimentally characterized using S-parameter and DC measurements. The measured pull-in voltages agree well with the simulated values. From S-parameter measurements, an electrical model with a very good agreement for both switch states (ON and OFF) has been obtained. The model is used in the design of reconfigurable CPW multimodal microwave filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Contreras A, Pradell L, Ribó M (2011) A novel tunable multimodal bandpass filter. In: 41st European microwave conference EuMC-2011, Manchester, UK, pp 1059–1062

  • Contreras A, Casals-Terré J, Pradell L, Giacomozzi F, Colpo S, Iannacci J and Ribó M (2012) A RF-MEMS switchable CPW air-bridge In: 7th European microwave integrated circuits conference, Amsterdam, pp 441–444

  • Contreras A, Ribo M, Pradell L, Blondy P (2013a) Uniplanar bandpass filters based on multimodal immitance inverters and end-coupled slotline resonators. IEEE Trans Microw Theory Tech 61(1):77–88. doi:10.1109/TMTT.2012.2226743

    Article  Google Scholar 

  • Contreras A, Ribó M, Pradell L, Casals-Terré J, Giacomozzi F, Iannacci J (2013b) K-band RF-MEMS uniplanar reconfigurable-bandwidth bandpass filter using multimodal immittance inverters. Electron Lett 49:704–706. doi:10.1049/el.2013.0681

    Article  Google Scholar 

  • Contreras A, Casals-Terré J, Pradell L, Giacomozzi F, Iannacci J, Ribó M (2014) A Ku-band RF-MEMS frequency-reconfigurable multimodal bandpass filter Int. J Microw Wireless Tech 6:277–285. doi:10.1017/S1759078714000567

    Article  Google Scholar 

  • Entesari K, Rebeiz GM (2005) A differential 4-bit 6.5-10-GHz RF MEMS tunable filter. IEEE Trans Microw Theory Tech 53:1103–1110. doi:10.1109/TMTT.2005.843501

    Article  Google Scholar 

  • Fedder GK (1994) Simulation of microelectromechanical systems. Ph.D. thesis, Dept. EECS, University of California, Berkeley, USA

  • Fourn E, Pothier A, Champeaux C, Tristant P, Catherinot A, Blondy P, Tanne G, Rius E, Person C, Huret F (2003) MEMS switchable interdigital coplanar filter. IEEE Trans Microw Theory Tech 51:320–324. doi:10.1109/TMTT.2002.806517

    Article  Google Scholar 

  • Giacomozzi F, Mulloni V, Colpo S, Iannacci J, Margesin B, Faes A (2011) A flexible fabrication process for RF MEMS devices. Rom J Inf Sci Technol 14:259–268

    Google Scholar 

  • Ke F, Miao J, Oberhammer J (2013) A ruthenium-based multimetal-contact RF MEMS switch with a corrugated diaphragm. J Micromech Syst 22:1447–1459. doi:10.1109/JMEMS.2008.2004786

    Article  Google Scholar 

  • Kim J, Kwon S, Jeong H, Hong Y, Lee S, Song I, Ju B (2009) A stiff and flat membrane operated DC contact type RF MEMS switch with low actuation voltage. Sens Actuators A 153:114–119. doi:10.1016/j.sna.2009.04.002

    Article  Google Scholar 

  • Kim M, Song Y, Ko S, Ahn S, Yoon J (2014) Ultra-low voltage MEMS switch using a folded hinge structure. Micro Nano Syst Lett 2:2. doi:10.1186/s40486-014-0002-y

    Article  Google Scholar 

  • Lakshmi S, Manohar P, Sayanu N (2016) Optimization of structures of DC RF MEMS series switches for low actuation. Microsyst Technol. doi:10.1007/s00542-016-3063-4

    Google Scholar 

  • Llamas MA, Ribó M, Girbau D, Pradell L (2009) A rigorous multimodal analysis and design procedure of a uniplanar 180º hybrid. IEEE Trans Microw Theory Tech 57:1832–1839. doi:10.1109/TMTT.2009.2022881

    Article  Google Scholar 

  • Llamas MA, Girbau D, Ribó M, Pradell L, Lázaro A, Giacomozzi F, Margesin B (2010) MEMS-based 180° phase switch for differential radiometers. IEEE Trans Microw Theory Tech 58:1264–1272. doi:10.1109/TMTT.2010.2045558

    Article  Google Scholar 

  • Llamas MA, Girbau D, Ribó M, Pradell L, Giacomozzi F, Colpo S (2011) RF-MEMS uniplanar 180° phase switch based on a multimodal air-bridged CPW cross. IEEE Trans Microw Theory Tech 59:1769–1777. doi:10.1109/TMTT.2011.2140125

    Article  Google Scholar 

  • Lucyszyn S (2004) Review of radio frequency microelectromechanical systems technology. IEE Proc Sci Meas Technol 151:93–103. doi:10.1049/ip-smt:20040405

    Article  Google Scholar 

  • Mahameed R, Rebeiz GM (2010) A high-power temperature-stable electrostatic RF MEMS capacitive switch based on a thermal buckle-beam design. J Micromech Syst 19:816–826. doi:10.1109/JMEMS.2010.2049475

    Article  Google Scholar 

  • Mulloni V, Colpo S, Faes A, Margesin B (2013) A simple analytical method for residual stress measurement on suspended MEM structures using surface profilometry. J Micromech Microeng. doi:10.1088/0960-1317/23/2/025025

    Google Scholar 

  • Nadaud K, Roubeau F, Zhang L-Y, Stefanini R, Pothier A, Blondy P (2016) Compact thin-film packaged RF-MEMS switched capacitors, In: International microwave symposium, San Francisco, USA. doi: 10.1109/MWSYM.2016.7540062

  • Nordquist CD, Muyshondt A, Pack MV, Finnegan PS, Dyck CW, Reines I, Kraus GM, Plut TA, Sloan GR, Goldsmith CL, Sullivan T (2004) An X-band to Ku-band RF MEMS switched coplanar strip filter IEEE Microw. Wireless Compon Lett 14:425–427. doi:10.1109/LMWC.2004.832071

    Article  Google Scholar 

  • Nordquist CD, Goldsmith CL, Dyck CW, Kraus GM, Finnegan PS, Austin F, Sullivan CT (2005) X-band RF MEMS tuned combline filter. Electron Lett 41:76–77. doi:10.1049/el:20057375

    Article  Google Scholar 

  • Ocera A, Farinelli P, Mezzanotte P, Sorrentino R, Margesin B, Giacomozzi F (2006) A novel MEMS-tunable hairpin line filter on silicon substrate. In: Proceedings of the 36th European microwave conference, Manchester, pp 803–806. doi: 10.1109/EUMC.2006.281041

  • Palego C, Deng J, Peng Z, Halder S, Hwang JCM, Forehand DI, Scarbrough D, Goldsmith CL, Johnston I, Sampath SK, Datta A (2009) Robustness of RF MEMS capacitive switches with molybdenum membranes. IEEE Trans Microw Theory Tech 57:3262–3269. doi:10.1109/TMTT.2009.2033885

    Article  Google Scholar 

  • Park SJ, Lee KY, Rebeiz G (2006) Low-loss 5.15–5.70-GHz RF MEMS switchable filter for wireless LAN applications. IEEE Trans MicrowTheory Tech 54:3931–3939. doi:10.1109/TMTT.2006.884625

    Article  Google Scholar 

  • Patel CD, Rebeiz GM (2012) A high-reliability high-linearity high-power RF-MEMS metal-contact switch for DC–40-GHz applications. IEEE Trans Microw Theory Tech 60:3096–3112. doi:10.1109/TMTT.2012.2211888

    Article  Google Scholar 

  • Peroulis D, Pacheco SP, Sarabandi K, Katehi LPB (2003) Electromechanical considerations in developing low-voltage RF MEMS switches. IEEE Trans Microw Theory Tech 51:259–270. doi:10.1109/TMTT.2002.806514

    Article  Google Scholar 

  • Persano A, Quaranta F, Capoccia G, Siciliano P (2016) Influence of design and fabrication on RF performance of capacitive RF MEMS switches. Microsyst Technol 22:1741–1746. doi:10.1007/s00542-016-2829-z

    Article  Google Scholar 

  • Philippine MA, Sigmund O, Rebeiz GM, Kenny TW (2013) Topology optimization of stressed capacitive RF MEMS switches. J Micromech Syst 22:206–215. doi:10.1109/JMEMS.2012.2224640

    Article  Google Scholar 

  • Pothier A, Orlianges JC, Guizhen Z, Champeaux C, Catherinot A, Cros D, Blondy P, Papapolymerou J (2005) Low-loss 2-bit tunable bandpass filters using MEMS DC contact switches. IEEE Trans Microw Theory Tech 53:354–360. doi:10.1109/TMTT.2004.839935

    Article  Google Scholar 

  • Rebeiz G, Entesari K, Reines I, Park SJ, El-tanani M, Grichener A, Brown A (2009) Tuning into RF MEMS. IEEE Microw Mag 10:55–72. doi:10.1109/MMM.2009.933592

    Article  Google Scholar 

  • Reines I, Brown A, El-Tanani M, Grichener A, Rebeiz G (2008) 1.6–2.4 GHz RF MEMS tunable 3-pole suspended combine filter. In: Proceedings of the IEEE MTT-S international microwave symposium, Atlanta, pp 133–136. doi: 10.1109/MWSYM.2008.4633121

  • Ribó M, Pradell L (1999) Circuit model for mode conversion in coplanar waveguide asymmetric shunt impedances. Electron Lett. 35:713–715. doi:10.1049/el:19990507

    Article  Google Scholar 

  • Scarbrough D, Goldsmith C, Papapolymerou J, Li Y (2009) Miniature microwave RF MEMS tunable waveguide filter. Proceedings of the 39th European microwave conference, Rome, pp 1860–1863

  • Sterner M, Oberhammer J (2008) Symmetrical antidirectional metallization for stress compensation of transfer-bonded monocrystalline silicon membranes. J Micromech Syst 17:195–205. doi:10.1109/JMEMS.2012.2224642

    Google Scholar 

  • Van Caekenberghe K, Vaha-Heikkila T (2008) An analog RF MEMS slotline true-time-delay phase shifter. IEEE Trans Microw Theory Tech 56:2151–2219. doi:10.1109/TMTT.2008.2002236

    Article  Google Scholar 

  • Wolff I (2006) Coplanar microwave integrated circuits. Wiley, Hoboken

    Book  Google Scholar 

  • Wong WC, Azid IA, Majlis BY (2011) Theoretical analysis of stiffness constant and effective mass for a round-folded beam in MEMS accelerometer. J Mech Eng 57:517–525. doi:10.5545/sv-jme.2009.151

    Article  Google Scholar 

  • Yang H, Zareie H, Rebeiz G (2015) High power stress-gradient resilient RF MEMS capacitive switch. J Micromech Syst. doi:10.1109/JMEMS.2014.2335173

    Google Scholar 

  • Young WC, Budynas RG, Sadegh AM (2012) Roak’s formulas for stress and strain, 8th edn. McGraw-Hill, New York

    Google Scholar 

  • Yuk KY, Fouladi S, Ramer R, Mansour RR (2012) RF MEMS switchable interdigital bandpass filter. IEEE Microw Wireless Compon Lett 22:44–46. doi:10.1109/LMWC.2011.2176926

    Article  Google Scholar 

  • Zareie H, Rebeiz GM (2013) High-power RF MEMS switched capacitors using a thick metal process. IEEE Trans Microw Theory Tech 61:455–463. doi:10.1109/TMTT.2012.2226744

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by research project TEC2013-48102-C2-1/2-P and fellowship BES-2008-004923 from the Spanish Ministry of Economy and Competitiveness, and fellowships 340469 and 410742 from the Mexican CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Casals-Terré.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Contreras, A., Casals-Terré, J., Pradell, L. et al. RF-MEMS switches for a full control of the propagating modes in uniplanar microwave circuits and their application to reconfigurable multimodal microwave filters. Microsyst Technol 23, 5959–5975 (2017). https://doi.org/10.1007/s00542-017-3379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3379-8

Keywords

Navigation