Skip to main content

Advertisement

Log in

The effects of aging vitreous on contrast sensitivity function

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Contrast sensitivity function (CSF) declines with age. When unassociated with cataracts, this is hypothesized to be due to macular ganglion cell complex (GCC) thinning. However, other studies found associations with increased vitreous echodensity and posterior vitreous detachment (PVD). We investigate the relationship between CSF, vitreous echodensity, PVD, and GCC thickness as related to age in the same subjects.

Methods

Age, CSF (Weber index: %W), vitreous echodensity (quantitative ultrasonography [QUS]), lens status (phakia or pseudophakia), best-corrected visual acuity (BCVA), and GCC thickness (SD-OCT) were evaluated in 57 eyes of 57 subjects with (n = 32, mean age = 62 years) and without (n = 25, mean age = 44 years) PVD (P < 0.001). A multivariate linear regression analysis was performed to assess the effects of independent variables on CSF.

Results

CSF was 51.2% worse in eyes with PVD (2.98 ± 0.31 %W) compared to no PVD (1.97 ± 0.24 %W; P < 0.001). QUS was 55.8% greater in eyes with PVD than those without (P < 0.001). Among all subjects, PVD status, vitreous echodensity, and age were the only independent variables demonstrating significant effects on CSF. Lens status, BCVA, and GCC thickness did not demonstrate association with CSF.

Conclusions

PVD, vitreous echodensity, and age are determinants of CSF. PVD and increased vitreous echodensity are each associated with diminished CSF, independent of age. Thus, in the absence of GCC thinning and cataracts, vitreous changes may be a cause of decreased CSF with age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Owsley C (2011) Aging and vision. Vis Res 51(13):1610–1622

    Article  PubMed  Google Scholar 

  2. Sia DI, Martin S, Wittert G, Casson RJ (2013) Age-related change in contrast sensitivity among Australian male adults: Florey Adult Male Ageing Study. Acta Ophthalmol 91(4):312–317

    Article  PubMed  Google Scholar 

  3. Tang Y, Zhou Y (2009) Age-related decline of contrast sensitivity for second-order stimuli: earlier onset, but slower progression, than for first-order stimuli. J Vis 9(7):18

    Article  PubMed  Google Scholar 

  4. Elliott DB, Whitaker D, MacVeigh D (1990) Neural contribution to spatiotemporal contrast sensitivity decline in healthy eyes. Vis Res 30(4):541–547

    Article  CAS  PubMed  Google Scholar 

  5. Ross JE, Clarke DD, Bron AJ (1985) Effect of age on contrast sensitivity function: uniocular and binocular findings. Br J Ophthalmol 69(1):51–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Johnson BM, Miao M, Sadun AA (1987) Age-related decline of human optic nerve axon populations. Age 10:5–9

    Article  Google Scholar 

  7. Adam CR, Shrier E, Ding Y, Glazman S, Bodis-Wollner I (2013) Correlation of inner retinal thickness evaluated by spectral-domain optical coherence tomography and contrast sensitivity in Parkinson disease. J Neuroophthalmol 33(2):137–142

    Article  PubMed  Google Scholar 

  8. Ekici F, Loh R, Waisbourd M et al (2015) Relationships between measures of the ability to perform vision-related activities, vision-related quality of life, and clinical findings in patients with glaucoma. JAMA Ophthalmol 133(12):1377–1385

    Article  PubMed  Google Scholar 

  9. Kleiner RC, Enger C, Alexander MF, Fine SL (1988) Contrast sensitivity in age-related macular degeneration. Arch Ophthalmol 106(1):55–57

    Article  CAS  PubMed  Google Scholar 

  10. Shandiz JH, Derakhshan A, Daneshyar A et al (2011) Effect of cataract type and severity on visual acuity and contrast sensitivity. J Ophthalmic Vis Res 6(1):26–31

    PubMed  PubMed Central  Google Scholar 

  11. Lasa MS, Podgor MJ, Datiles MB 3rd, Caruso RC, Magno BV (1993) Glare sensitivity in early cataracts. Br J Ophthalmol 77(8):489–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Elliott DB, Whitaker D, Thompson P (1989) Use of displacement threshold hyperacuity to isolate the neural component of senile vision loss. Appl Opt 28(10):1914–1918

    Article  CAS  PubMed  Google Scholar 

  13. Sebag J (1987) Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol 225:89–93

    Article  CAS  PubMed  Google Scholar 

  14. Sebag J (2010) Vitreous anatomy, aging, and anomalous posterior vitreous detachment. In: Dartt DA, Beharse JA, Dana R (eds) Encyclopedia of the eye, vol 4. Elsevier, Oxford, pp 307–315

    Chapter  Google Scholar 

  15. Tozer K, Johnson MW, Sebag J (2014) Vitreous aging and posterior vitreous detachment. In: Sebag J (ed) Vitreous—in health & disease. Springer, New York, pp 131–150

    Google Scholar 

  16. Mamou J, Wa CA, Yee KM et al (2015) Ultrasound-based quantification of vitreous floaters correlates with contrast sensitivity and quality of life. Invest Ophthalmol Vis Sci 56(3):1611–1617

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bach M (1996) The Freiburg visual acuity test—automatic measurement of visual acuity. Optom Vis Sci 73(1):49–53

    Article  CAS  PubMed  Google Scholar 

  18. Sebag J, Yee KMP, Huang L, Wa C, Sadun AA (2014) Vitrectomy for floaters—prospective efficacy analyses and retrospective safety profile. Retina 34(6):1062–1068

    Article  PubMed  Google Scholar 

  19. Van den Berg T, Franssen L, Coppens JE (2010) Ocular media clarity and straylight. In: Dartt DA, Beharse JA, Dana R (eds) Encyclopedia of the eye, vol 4. Elsevier, Oxford, pp 173–183

    Chapter  Google Scholar 

  20. Sebag J (1989) The vitreous: structure, function, and pathobiology. Springer-Verlag, New York

    Book  Google Scholar 

  21. Huang LC, Yee KMP, Wa CA, Nguyen JN, Sadun AA, Sebag J (2014) Vitreous floaters and vision: current concepts and management paradigms. In: Sebag J (ed) Vitreous—in health & disease. Springer, New York, pp 771–788

    Google Scholar 

  22. Milston R, Madigan M, Sebag J (2016) Vitreous floaters—etiology, diagnostics, and management. Surv Ophthalmol 61(2):211–227

    Article  PubMed  Google Scholar 

  23. Chylack LT Jr, Wolfe JK, Singer DM et al (1993) The lens opacities classification system III. The longitudinal study of cataract study group. Arch Ophthalmol 111(6):831–836

    Article  PubMed  Google Scholar 

  24. Pesudovs K, Elliott DB (2003) Refractive error changes in cortical, nuclear, and posterior subcapsular cataracts. Br J Ophthalmol 87(8):964–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pesudovs K, Coster DJ (1996) Assessment of visual function in cataract patients with a mean visual acuity of 6/9. Aust N Z J Ophthalmol 24:5–9

    Article  CAS  PubMed  Google Scholar 

  26. Sebag J (2004) Anomalous PVD – a unifying concept in vitreo-retinal diseases. Graefes Arch Clin Exp Ophthalmol 242:690–698

    Article  CAS  PubMed  Google Scholar 

  27. Montés-Micó R, Alió JL (2003) Distance and near contrast sensitivity function after multifocal intraocular lens implantation. J Cataract Refract Surg 29(4):703–711

    Article  PubMed  Google Scholar 

  28. Leyland M, Zinicola E (2003) Multifocal versus monofocal intraocular lenses in cataract surgery: a systematic review. Ophthalmology 110(9):1789–1798

    Article  PubMed  Google Scholar 

  29. Dennis RJ, Beer JM, Baldwin JB, Ivan DJ, Lorusso FJ, Thompson WT (2004) Using the Freiburg Acuity and Contrast Test to measure visual performance in USAF personnel after PRK. Optom Vision Sci 81(7):516–524

    Article  Google Scholar 

  30. Garcia GA, Khoshnevis M, Yee KM, Nguyen-Cuu J, Nguyen JH, Sebag J (2016) Degradation of contrast sensitivity following posterior vitreous detachment. Am J Ophthalmol 172:7–12

    Article  PubMed  Google Scholar 

  31. Bach M (1997) Anti-aliasing and dithering in the Freiburg Visual Acuity Test. Spat Vis 11:85–89

    Article  CAS  PubMed  Google Scholar 

  32. Allard R, Renaud J, Molinatti S, Faubert J (2013) Contrast sensitivity, healthy aging and noise. Vis Res 92:47–52

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Dahn Nguyen and Alice Chen for their contributions to the statistical analyses conducted in this study.

Funding

VMR Research Foundation, Inc. provided financial support in the form of funding technician salaries, meeting expenses, and institutional overhead expenses. Donors had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebag.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (name the institution/committee) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, G.A., Khoshnevis, M., Yee, K.M.P. et al. The effects of aging vitreous on contrast sensitivity function. Graefes Arch Clin Exp Ophthalmol 256, 919–925 (2018). https://doi.org/10.1007/s00417-018-3957-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-018-3957-1

Keywords

Navigation