Skip to main content
Log in

Development of modified microdosimetric kinetic model for relative biological effectiveness in proton therapy

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

To predict the biological effects of ionising radiation, the quantity of biological dose is introduced instead of the physical absorbed dose. In proton therapy, a constant relative biological effectiveness (RBE) of 1.1 is usually applied clinically as recommended by the International Commission of Radiation Units and Measurements. This study presents a new model, based on the modified microdosimetric kinetic model (MMKM), for calculating variable RBE values based on experimental data on the induction of DNA double-strand breaks (DSBs) within cells. The MMKM was proposed based on experimental data for the yield of DSBs in mammalian cells, which allows modification of the yield of primary lesions in the MKM. In this approach, a unique function named f(LET), which describes the relation between RBE and linear energy transfer (LET), was considered for charged particles. In the presented model (DMMKM), the MMKM approach was developed further by considering different f(LET)s for different relevant ions involved in energy deposition events in proton therapy. Although experimental data represent the dependence of the yield of primary lesions on the ion species, the DSB yield (assumed as the main primary lesion) is assumed independent of the ion species in the MMKM. In the DMMKM, by considering the yield of primary lesions as a function of the ion species, the α and β values are in better agreement with the experimental data as compared to those of the MKM and MMKM approaches. The biological dose in the DMMKM is predicted to be lower than that in the MMKM. Further, in the proposed model, the variation of the β parameter is higher than the constant value assumed in the MKM, at the distal end of the spread-out Bragg peak (SOBP). Moreover, the level of cell death estimated by the MMKM at the SOBP region is higher than that obtained based on the DMMKM. It is concluded that considering modified f(LET)s in the model developed here is more consistent with experimental results than when MMKM and MKM approaches are considered. The DMMKM examines the biological effects with full detail and will, therefore, be effective in improving proton therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Belli M, Cera F, Cherubini R, Haque AMI, Ianzini F, Moschini G, Sapora O, Simone G, Taboschini MA, Tiveron P (1993) Inactivation and mutation induction in V79 cells by low energy protons: re-evaluation of the results at the LNL facility. Int J Radiat Biol 63:331–337

    Article  Google Scholar 

  • Belli M, Cera F, Cherubini R, Ianzini F, Moschini G, Sapora O, Simone G, Taboschini MA, Tiveron P (1994) DNA double-strand breaks induced by low energy protons in V79 cells. Int J Radiat Biol 65:529–536

    Article  Google Scholar 

  • Belli M, Cera F, Cherubini R, Vecchia MD, Haque AM, Ianzini F, Moschini G, Sapora O, Simone G, Taboschini MA, Tiveron P (1998) RBE–LET relationships for cell inactivation and mutation induced by low energy protons in V79 cells: further results at the LNL facility. Int J Radiat Biol 74:501–509

    Article  Google Scholar 

  • Belli M, Cherubini R, Vecchia MD, Dini V, Moschini G, Signoretti C, Simone G, Taboschini MA, Tiveron P (2000) DNA DSB induction and rejoining in V79 cells irradiated with light ions: a constant field gel electrophoresis study. Int J Radiat Biol 76:1095–1104

    Article  Google Scholar 

  • Bertolet A, Cortes-Giraldo MA, Carabe-Fernandez A (2021) Implementation of the microdosimetric kinetic model using analytical microdosimetry in a treatment planning system for proton therapy. Phys Med 81:69–76

    Article  Google Scholar 

  • Blöcher D (1998) DNA double-strand break repair determines the RBE of alpha-particles. Int J Radiat Biol 54:761–771

    Article  Google Scholar 

  • Bopp C, Hirayama R, Inaniwa T, Kitagawa A, Matsufuji N, Noda K (2016) Adaptation of the microdosimetric kinetic model to hypoxia. Phys Med Biol 61:7586–7599

    Article  Google Scholar 

  • Bortfeld T (1997) An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys 24:2024–2033

    Article  Google Scholar 

  • Chatterjee A, Schaefer HJ (1976) Microdosimetric structure of heavy ion tracks in tissue. Radiat Environ Biophys 13:215–227

    Article  Google Scholar 

  • Chen Y, Li J, Li C, Qiu R, Wu Z (2017) A modified microdosimetric kinetic model for relative biological effectiveness calculation. Phys Med Biol 63:015008. https://doi.org/10.1088/1361-6560/aa9a68

    Article  Google Scholar 

  • Cirrone GA, Cuttone G, Mazzaglia SE, Romano F, Sardina D, Agodi C, Attili A, Blancato AA, Napoli MD, Rosa FD, Kaitaniemi P, Marchetto F, Petrovic I, Ristic-Fira A, Shin J, Tarnavsky N, Tropea S, Zacharatou C (2011) Hadrontherapy: a Geant4-based tool for proton/ion-therapy studies. Prog Nucl Sci Technol 2:207–212

    Article  Google Scholar 

  • Dahle TJ, Magro G, Ytre-Hauge KS, Stokkevåg CH, Choi K, Mairani A (2018) Sensitivity study of the microdosimetric kinetic model parameters for carbon ion radiotherapy. Phys Med Biol 63:225016. https://doi.org/10.1088/1361-6560/aae8b4

    Article  Google Scholar 

  • Elsässer T, Scholz M (2007) Cluster effects within the local effect model. Radiat Res 167:319–329

    Article  ADS  Google Scholar 

  • Esposito G, Belli M, Campa A, Cherubini R, Cuttone G, Dini V, Furusawa Y, Gerardi S, Simone G, Sorrentino E, Taboschini MA (2006) DNA fragments induction in human fibroblasts by radiations of different qualities. Radiat Prot Dosim 122:166–168

    Article  Google Scholar 

  • Fakir H, Sachs RK, Stenerlöw B, Hofmann W (2006) Clusters of DNA double-strand breaks induced by different doses of nitrogen ions for various LETs: experimental measurements and theoretical analyses. Radiat Res 166:917–927

    Article  ADS  Google Scholar 

  • Folkard M, Prise KM, Vojnovic B, Newman HC, Roper MJ, Micheal BD (1996) Inactivation of V79 cells by low-energy protons, deuterons and helium-3 ions. Int J Radiat Biol 69:729–738

    Article  Google Scholar 

  • Frankenberg D, Brede HJ, Schrewe UJ, Steinmetz C, Frankenberg-Schwager M, Kasten G, Pralle E (1999) Induction of DNA double-strand breaks by 1H and 4He ions in primary human skin fibroblasts in the LET range of 8 to 124 keV/microm. Radiat Res 151:540–549

    Article  ADS  Google Scholar 

  • Friedland W, Jacob P, Bernhardt P, Paretzke HG, Dingfelder M (2003) Simulation of DNA damage after proton irradiation. Radiat Res 159:401–410

    Article  ADS  Google Scholar 

  • Friedrich T, Weyrather W, Elsässer T, Durante M, Scholz M (2010) Accuracy of RBE: experimental and theoretical considerations. Radiat Environ Biophys 49:345–349

    Article  Google Scholar 

  • Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai F, Ando K (2000) Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne-ion beams. Radiat Res 154:485–496

    Article  ADS  Google Scholar 

  • Hall EJ (2009) Radiation biology for pediatric radiologists. Pediatr Radiol 39:57–64

    Article  Google Scholar 

  • Hawkins RB (1994) A statistical theory of cell killing by radiation of varying linear energy transfer. Radiat Res 140:366–374

    Article  ADS  Google Scholar 

  • Hawkins RB (1998) A microdosimetric-kinetic theory of the dependence of the RBE for cell death on LET. Med Phys 25:1157–1170

    Article  Google Scholar 

  • Hawkins RB (2003) A microdosimetric-kinetic model for the effect of non-Poisson distribution of lethal lesions on the variation of RBE with LET. Radiat Res 160:61–69

    Article  ADS  Google Scholar 

  • Hawkins RB, Inaniwa T (2013) A microdosimetric-kinetic model for cell killing by protracted continuous irradiation including dependence on LET I: repair in cultured mammalian cells. Radiat Res 180:584–894

    Article  ADS  Google Scholar 

  • Heilmann J, Taucherscholz G, Kraft G (1995) Induction of DNA double-strand breaks in Cho-K1 cells by carbon ions. Int J Radiat Biol 68:153–162

    Article  Google Scholar 

  • Höglund E, Blomquist E, Carlsson J, Stenerlöw B (2000) DNA damage induced by radiation of different linear energy transfer: initial fragmentation. Int J Radiat Biol 76:539–547

    Article  Google Scholar 

  • ICRU (1993) Stopping powers and ranges for protons and alpha particles. ICRU Report No. 49. International Commission on Radiation Units and Measurements, Bethesda

  • ICRU (2005) Stopping of ions heavier than helium. ICRU Report No. 73. International Commission on Radiation Units and Measurements, Bethesda

  • Inaniwa T, Furukawa T, Kase Y, Matsufuji N, Toshito T, Matsumoto Y, Furusawa Y, Noda K (2010) Treatment planning for a scanned carbon beam with a modified microdosimetric kinetic model. Phys Med Biol 55:6721–6737

    Article  Google Scholar 

  • Inaniwa T, Kanematsu N, Matsufuji N, Kanai T, Shirai T, Noda K, Tsuji H, Kamada T, Tsujii H (2015) Reformulation of a clinical-dose system for carbon-ion radiotherapy treatment planning at the National Institute of Radiological Sciences, Japan. Phys Med Biol 60:3271–3286

    Article  Google Scholar 

  • Jenner TJ, Bellis M, Goodhead DT, Ianzini F, Simone G, Tabocchini MA (1992) Direct comparison of biological effectiveness of protons and alpha-particles of the same LET. III. Initial yield of DNA double-strand breaks in V79 cells. Int J Radiat Biol 61:631–637

    Article  Google Scholar 

  • Jenner TJ, deLara CM, O’Neill P, Stevens DL (1993) Induction and rejoining of DNA double-strand breaks in V79–4 mammalian cells following gamma- and alpha-irradiation. Int J Radiat Biol 64:265–273

    Article  Google Scholar 

  • Kase Y, Kanai T, Matsumoto Y, Furusawa Y, Okamoto H, Asaba T, Sakama M, Shinoda H (2006) Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiat Res 166:629–638

    Article  ADS  Google Scholar 

  • Kase Y, Kanai T, Matsufuji N, Furusawa Y, Elsässer T, Scholz M (2008) Biophysical calculation of cell survival probabilities using amorphous track structure models for heavy-ion irradiation. Phys Med Biol 53:37–59

    Article  Google Scholar 

  • Kase Y, Yamashita W, Matsufuji N, Takada K, Sakae T, Furusawa Y, Yamashita H, Murayama S (2012) Microdosimetric calculation of relative biological effectiveness for design of therapeutic proton beams. J Radiat Res 54:485–493

    Article  Google Scholar 

  • Kiefer J, Straaten H (1986) A model of ion track structure based on classical collision dynamics. Phys Med Biol 31:1201–1209

    Article  Google Scholar 

  • Kraft G, Scholz M, Bechthold U (1999) Tumor therapy and track structure. Radiat Environ Biophys 38:229–237

    Article  Google Scholar 

  • Löbrich M, Rydberg B, Cooper PK (1994) DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual NotI fragments by hybridization. Radiat Res 139:142–151

    Article  ADS  Google Scholar 

  • Lühr A, Toftegaard J, Kantemiris L, Hansen DC, Bassler N (2012) Stopping power for particle therapy: the generic library libdEdx and clinically relevant stopping-power ratios for light ions. Int J Radiat Biol 88:209–212

    Article  Google Scholar 

  • Magro G, Dahle TJ, Molinelli S, Ciocca M, Fossati P, Ferrari A, Inaniwa T, Matsufuji N, Ytre-Hauge KS, Mairani A (2017) The FLUKA Monte Carlo code coupled with the NIRS approach for clinical dose calculations in carbon ion therapy. Phys Med Biol 62:3814–3827

    Article  Google Scholar 

  • Moiseenko VV, Waker AJ, Hama RN, Prestwich WV (2001) Calculation of radiation-induced DNA damage from photons and tritium beta-particles. Part II: tritium RBE and damage complexity. Radiat Environ Biophys 40:33–38

    Article  Google Scholar 

  • Prise KM, Folkard M, Davies S, Michael BD (1990) The irradiation of V79 mammalian cells by protons with energies below 2 MeV. Part II. Measurement of oxygen enhancement ratios and DNA damage. Int J Radiat Biol 58:261–277

    Article  Google Scholar 

  • Prise KM, Ahnström G, Belli M, Carlsson J, Frankenberg D, Kiefer J, Löbrich M, Michael BD, Nygren J, Simone G, Stenerlöw B (1998) A review of DSB induction data for varying quality radiations. Int J Radiat Biol 74:173–184

    Article  Google Scholar 

  • Rydberg B, Löbrich M, Cooper PK (1994) DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-Field Gel Electrophoresis Method Radiat Res 139:133–141

    Google Scholar 

  • Rydberg B, Heilbronn L, Holley WR, Löbrich M, Zeitlin C, Chatterjee A, Cooper PK (2002) Spatial distribution and yield of DNA double-strand breaks induced by 3–7 MeV helium ions in human fibroblasts. Radiat Res 158:32–42

    Article  ADS  Google Scholar 

  • Saha GB (2013) Physics and radiobiology of nuclear medicine. Springer, New York

    Book  Google Scholar 

  • Schmid TE, Greubel C, Dollinger G, Schmid E (2017) The influence of reference radiation photon energy on high-LET RBE: comparison of human peripheral lymphocytes and human–hamster hybrid AL cells. Radiat Environ Biophys 56:79–87

    Article  Google Scholar 

  • Scholz M, Kraft G (1996) Track structure and the calculation of biological effects of heavy charged particles. Adv Space Res 18:5–14

    Article  ADS  Google Scholar 

  • Scholz M, Kellerer AM, Kraft-Weyrather W, Kraft G (1997) Computation of cell survival in heavy ion beams for therapy. Radiat Environ Biophys 36:59–66

    Article  Google Scholar 

  • Stenerlöw B, Carlsson J, Blomquist E, Erixon K (1994) Clonogenic cell survival and rejoining of DNA doubles breaks: comparisons between three cell lines after photon or He ion irradiation. Int J Radiat Biol 65:631–639

    Article  Google Scholar 

  • Stenerlöw B, Blomquist E, Grusell E, Hartman T, Carlsson J (1996) Rejoining of DNA double-strand breaks induced by accelerated nitrogen ions. Int J Radiat Biol 70:413–420

    Article  Google Scholar 

  • Tsai JY, Chen FH, Hsieh TY, Hsiao YY (2015) Effects of indirect actions and oxygen on relative biological effectiveness: estimate of DSB induction and conversion induced by gamma rays and helium ions. J Radiat Res 56:691–699

    Article  Google Scholar 

  • Tsujii H, Kamada T, Shirai T, Noda K, Tsuji H, Karasawa K (2014) Carbon-ion radiotherapy. Springer, Japan

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Payvand Taherparvar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghipour, H., Taherparvar, P. Development of modified microdosimetric kinetic model for relative biological effectiveness in proton therapy. Radiat Environ Biophys 61, 375–390 (2022). https://doi.org/10.1007/s00411-022-00977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-022-00977-3

Keywords

Navigation