Skip to main content
Log in

Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In the Tanco pegmatite, one of the world’s major Ta deposits, tantalum mineralization shows a complexity that reflects the complex petrogenesis of its host pegmatite. Micas are common in most of the pegmatite units and are intimately associated with the successive stages of Ta mineralization, from the wall zone to the central zones where micaceous replacement is pervasive. Different generations of micas, both primary and secondary, associated with Ta oxides, were selected for electron microprobe and laser ablation ICP-MS investigation. Their chemical trends are used to constrain the magmatic versus hydrothermal processes that played a role in their crystallization and their associated Ta mineralization. Micas range from dioctahedral muscovite to trioctahedral lepidolite through Al↔Li substitution. Unexpectedly, the most evolved compositions (low K/Rb ratios and high Li contents) occur in the wall zone; they are interpreted to reflect nonequilibrium crystallization from an undercooled melt, with or without boundary layer effects. In the central zones, the fine-grained mica–quartz assemblage hosts some coarser-grained Li-muscovite, which has the highest Ta contents (up to 400 ppm). These Li–F–a-rich micas are interpreted to originate from a magmatic metasomatic event, which was also at the origin of the MQM-style Ta mineralization at Tanco. However, the Li–Ta-poor, muscovite end-member compositions of fine-grained alteration micas suggest crystallization from an aqueous fluid, during a metasomatic (hydrothermal) event involving late pegmatitic fluids. The low Ta concentrations (around 50 ppm) of this fine-grained muscovite suggest that this fluid transported at least small amounts of Ta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Badanina EV, Veksler IV, Thomas R, Syritso LF, Trumbull RB (2004) Magmatic evolution of Li–F, rare-metal granites: a case study of melt inclusions in the Khangilay complex, eastern Transbaikalia, Russia. Chem Geol 210:113–133

    Article  Google Scholar 

  • Beakhouse GP (1991) Winnipeg River subprovince. In: Thurston PC, Williams HR, Sutcliff RH, Stott GM (eds) Geology of Ontario: Ministry of Northern Development and Mines, special vol 4, part 1, pp 239–278

  • Beus AA, Zhalashkova NY (1964) Postmagmatic high temperature metasomatic processes in granitic rocks. Int Geol Rev 6:668–681

    Article  Google Scholar 

  • Černa I, Černý P, Ferguson RB (1972) The Tanco pegmatite at Bernic Lake, Manitoba; III, Amblygonite–montebrasite. Can Mineral 11:643–659

    Google Scholar 

  • Černý P (2005) The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons. In: Rare-element geochemistry and mineral deposits, Geological Association of Canada Short Course Notes 17:127–158

  • Černý P, Burt DM (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites. In: Micas SW, Bailey (ed) Reviews in mineralogy, vol 13, pp 257–292

  • Černý P, Trueman DL, Ziehlke DV, Goad BE, Paul BJ (1981) The Cat Lake-Winnipeg River and the Wekusko Lake pegmatite fields, Manitoba. Manitoba Department of Energy and Mines Report, ER80–1

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Černý P, Stanek J, Novak M, Baadsgaard H, Rieder M, Ottolini L, Kavalova M, Chapman R (1995) Geochemical and structural evolution of micas in the Rozna and Dobra-Voda pegmatites, Czech Republic. Mineral Petrol 55:177–201

    Article  Google Scholar 

  • Černý P, Ercit TS, Vanstone PJ (1998) Mineralogy and petrology of the Tanco rare-element deposit, Southeastern Manitoba. International Mineralogical Association Field Trip Guidebook, B6 (17th General Meeting)

  • Černý P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology one hundredth anniversary volume, pp 337–370

  • Chevychelov V, Zaraisky C, Borisovsky, S, Borkov D (2004) Partitioning of Ta and Nb between magmatic melt and aqueous (K,Na,H)F-containing fluid: effects of temperature and chemical composition of the melt. EMPG-X Symposium Abstracts, Lithos supplement to vol 73(1–2), pp S17

  • Cuney M, Marignac C, Weisbrod A (1992) The Beauvoir topaz-lepidolite albitic granite (Massif Central France). A highly specialized granite with disseminated Sn–Li–Ta–Nb–Be mineralization of magmatic origin. Econ Geol 87:1766–1794

    Article  Google Scholar 

  • Ercit TS (1986) The simpsonite paragenesis; the crystal chemistry and geochemistry of extreme Ta fractionation. PhD Thesis, University of Manitoba

  • Ferguson RB, Hawthorne FC, Grice JD (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. II. Wodginite. Can Mineral 14:550–560

    Google Scholar 

  • Foord EE, Černý P, Jackson LL, Sherman DM, Eby RK (1995) Mineralogical and geochemical evolutions of micas from miarolitic pegmatites of the anorogenic pikes-Peak Batholith, Colorado. Mineral Petrol 55:1–26

    Article  Google Scholar 

  • Foster MD (1960) Interpretation of the composition of lithium-micas. US Geol Survey Prof Paper 354-B:11–49

    Google Scholar 

  • Gordiyenko VV (1971) Concentration of Li, Rb and Cs in potash feldspar and muscovite as criteria for assessing the rare metal mineralization in granitic pegmatites. Int Geol Rev 13:134–142

    Article  Google Scholar 

  • Grice JD, Černý P, Ferguson RB (1972) The Tanco pegmatite at Bernic Lake, Manitoba. II. Wodginite, tantalite, pseudo-ixiolite and related minerals. Can Mineral 11:609–642

    Google Scholar 

  • Grice JD, Ferguson RB, Hawthorne FC (1976) The crystal structures of tantalite, ixiolite and wodginite from Bernic Lake, Manitoba. I. Tantalite and ixiolite. Can Mineral 14:540–549

    Google Scholar 

  • Icenhower JP, London D (1995) An experimental study of element partitioning between biotite, muscovite and coexisting peraluminous granitic melt at 200 MPa (H2O). Am Mineral 80:1229–1251

    Google Scholar 

  • Jolliff BL, Papike JJ, Shearer CK (1987) Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Blacks Hills, South Dakota, USA. Geochim Cosmochim Acta 51:519–534

    Article  Google Scholar 

  • Kile DE, Foord EE (1998) Micas from the Pikes Peak batholith and its cogenetic granitic pegmatites, Colorado: optical properties, composition, and correlation with pegmatite evolution. Can Mineral 36:463–482

    Google Scholar 

  • Kontak DJ (2006) Nature and origin of an LCT-suite pegmatite with late-stage sodium enrichment, Brazil Lake, Yarmouth County, Nova Scotia. I. Geological setting and petrology. Can Mineral 44:563–598

    Article  Google Scholar 

  • Kovalenko VI, Kuz’min MI, Letnikov FA (1970) Magmatic origin of lithium and fluorine bearing rare metal granites. Doklady Akademii Nauk SSSR Earth Sciences Section 190:189–192 (in Russian)

    Google Scholar 

  • Linnen RL (1998) The solubility of Nb–Ta–Zr–Hf–W in granitic melts with Li and Li + F: constraints for mineralization in rare metal granites and pegmatites. Econ Geol 93:1013–1025

    Google Scholar 

  • Linnen RL, Williams-Jones AE (1993) Mineralogical constraints on magmatic and hydrothermal Sn-W-Ta-Nb mineralization at the Nong Sua aplite-pegmatite, Thailand. Eur J Mineral 5:721–736

    Google Scholar 

  • Linnen RL, Williams-Jones AE (1995) Genesis of a magmatic metamorphic hydrothermal system; the Sn-W polymetallic deposits at Pilok, Thailand. Econ Geol 90:1148–1166

    Google Scholar 

  • London D (1986) Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase equilibrium experiments. Am Mineral 71:376–395

    Google Scholar 

  • London D (1987) Internal differentiation of rare-element pegmatites: effects of boron, phosphorus and fluorine. Geochim Cosmochim Acta 51:403–420

    Article  Google Scholar 

  • London D (1990) Internal differentiation of rare-element pegmatites: a synthesis of recent research. Geol Soc Am Spec Pap 246:35–50

    Google Scholar 

  • London D, Hervig RL, Morgan GB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 Mpa. Contrib Mineral Petrol 99:360–373

    Article  Google Scholar 

  • London D, Morgan GB, Hervig RL (1989) Vapor-undersaturated experiments with Macusani glass + H2O at 200 Mpa, and the internal differentiation of granitic pegmatites. Contrib Mineral Petrol 102:1–17

    Article  Google Scholar 

  • Monier G, Robert JL (1986) Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: an experimental study in the systems K2O-Li2O-MgO-Al2O3-SiO2-H2O-HF at 600°C, 2 kbar PH2O: comparison with natural lithium micas. Mineral Mag 50:641–651

    Article  Google Scholar 

  • Monier G, Charoy B, Cuney M, Ohnenstetter D, Robert JL (1987) Evolution spatiale et temporelle de la composition des micas du granite albitique à topaze-lépidolite de Beauvoir. Géologie de la France 2–3:179–188

    Google Scholar 

  • Morgan GB, London D (1987) Alteration of amphibolitic wallrock around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Am Mineral 72:1097–1121

    Google Scholar 

  • Morgan GB, London D (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contrib Mineral Petrol 136:310–330

    Article  Google Scholar 

  • Morgan GB, London D (2003) Trace-element partitioning at conditions far from equilibrium: Ba and Cs distributions between alkali feldspar and undercooled hydrous granitic liquid at 200 MPa. Contrib Mineral Petrol 144:722–738

    Article  Google Scholar 

  • Morteani G, Gaupp R (1989) Geochemical evaluation of the tantalum potential of pegmatites. In: Lanthanides, tantalum and niobium, Society for geology applied to mineral deposits special publication, pp 303–310

  • Pesquera Perez A, Torres-Ruiz J, Gil PP, Velilla N (1999) Chemistry and genetic implications of tourmaline and Li–F–Cs micas from the Valdeflores area (Caceres, Spain). Am Mineral 84:55–69

    Google Scholar 

  • Pollard PJ (1989) Geological characteristics and genetic problems associated with the development of granite-hosted deposits of tantalum and niobium. In: Moller P, Černý P, Saupé F (eds) Lanthanides, Tantalum and Niobium, pp 240–256

  • Raimbault L, Cuney M, Azencotte C, Duthou JL, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

    Google Scholar 

  • Rickers K, Thomas R, Heinrich W (2006) The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite–pegmatite-hydrothermal system at Ehrenfriedersdorf, Germany: a SXRF study of melt and fluid inclusions. Mineralium Deposita 41:229–245

    Article  Google Scholar 

  • Rinaldi R, Cerný P, Ferguson RB (1972) The Tanco pegmatite at Bernic Lake, Manitoba; VI, Lithium–rubidium–cesium micas. Can Mineral 11:690–707

    Google Scholar 

  • Roda Robles E, Pesquera Perez A, Velasco F (1995) Micas of the muscovite–lepidolite series from the Fregeneda pegmatites (Salamanca, Spain). Mineral Petrol 55:145–157

    Article  Google Scholar 

  • Roda Robles E, Pesquera Perez A, Gil PP, Torres-Ruiz J, de Parseval P (2006) Mineralogy and geochemistry of micas from the Pinilla de Fermoselle pegmatite (Zamora, Spain). Eur J Mineral 18:369–377

    Article  Google Scholar 

  • Roda Robles E, Keller P, Pesquera Perez A, Fontan F (2007) Micas of the muscovite–lepidolite series from Karibib pegmatites, Namibia. Mineral Mag 71:41–62

    Article  Google Scholar 

  • Selway JB, Černý P, Hawthorne FC (2000) The Tanco pegmatite at Bernic Lake, Manitoba. XIV. Internal tourmaline. Can Mineral 38:877–891

    Article  Google Scholar 

  • Selway JB, Breaks FW, Tindle AG (2005) A review of rare-element (Li–Cs–Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor Mining Geol 14:1–30

    Article  Google Scholar 

  • Solodov NA (1962) Internal structure and geochemistry of rare-element granitic pegmatites. Acad Sci USSR, Moscow (in Russian)

  • Stilling A, Černý P, Vanstone PJ (2006) The Tanco pegmatite at Bernic Lake, Manitoba. XVI. zonal and bulk composition and their petrogenetic significance. Can Mineral 44:599–623

    Article  Google Scholar 

  • Thomas AV, Bray CJ, Spooner ETC (1988) A discussion of the Jahns-Burnham proposal for the formation of zoned granitic pegmatites using solid–liquid–vapour inclusions from the Tanco pegmatite, S.E. Manitoba, Canada. Trans R Soc Edinb Earth Sci 79:299–315

    Google Scholar 

  • Thomas AV, Pasteris JD, Bray CJ, Spooner ETC (1990) H2O-CH4-NaCl-CO2 inclusions from the footwall contact of the Tanco granitic pegmatite; estimates of internal pressure and composition from microthermometry, laser Raman spectroscopy, and gas chromatography. Geochim Cosmochim Acta 54:559–573

    Article  Google Scholar 

  • Thomas R, Webster JD, Rhede D, Seifert W, Rickers K, Forster HJ, Heinrich W, Davidson P (2006) The transition from peraluminous to peralkaline granitic melts: evidence from melt inclusions and accessory minerals. Lithos 91:137–149

    Article  Google Scholar 

  • Tindle AG, Webb PC (1990) Estimation of lithium content in trioctahedral micas using microprobe data: application to micas from granitic rocks. Eur J Mineral 5:595–610

    Google Scholar 

  • Tindle AG, Breaks FW, Webb PC (1998) Wodginite group minerals from the Separation Rapids rare-element granitic pegmatite group, NW Ontario. Can Mineral 36:637–658

    Google Scholar 

  • Tindle AG, Breaks FW, Selway JB (2002) Tourmaline in petalite subtype granitic pegmatites: evidence of fractionation and contamination from the Pakeagam Lake and Separation Lake areas of northwestern Ontario, Canada. Can Mineral 40:753–788

    Article  Google Scholar 

  • Tischendorf G, Gottesmann B, Forster H-J, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analysis and an improved diagram for graphical representation. Mineral Mag 61:809–834

    Article  Google Scholar 

  • Van Lichtervelde M, Linnen RL, Salvi S, Beziat D (2006) The role of metagabbro rafts on tantalum mineralization in the Tanco pegmatite, Manitoba. Can Mineral 44:625–644

    Article  Google Scholar 

  • Van Lichtervelde M, Salvi S, Beziat D, Linnen RL (2007) Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower pegmatite, Manitoba, Canada. Econ Geol 102:257–274

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31

    Article  Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 Gpa. Contrib Mineral Petrol 143:673–683

    Article  Google Scholar 

  • Veksler IV, Thomas R, Schmidt C (2002) Experimental evidence of three coexisting immiscible fluids in synthetic granitic pegmatite. Am Mineral 87:775–779

    Google Scholar 

  • Wise MA (1995) Trace element chemistry of lithium micas from rare-element granitic pegmatites. Mineral Petrol 55:203–215

    Article  Google Scholar 

  • Wolf D, London D (1997) Boron in granitic pegmatites: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Mineral Petrol 130:12–30

    Article  Google Scholar 

Download references

Acknowledgments

Electron microprobe analyses were performed using the facilities of the Observatoire Midi-Pyrénées, Toulouse, France, and of the Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany. We are particularly indebted to Philippe de Parseval (Toulouse) and Jerzy Lodziak (Hannover) for their help during microprobe data acquisition. LA-ICP-MS analyses were performed at the Observatoire Midi-Pyrénées, Toulouse, with the collaboration of Rémi Freydier and Frédéric Candaudap. This research was supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant to R.L. Linnen. Access to the Tanco pegmatite, sampling of drill core and underground workings, and access to assay information by the Tantalum Mining Corporation of Canada is gratefully appreciated, particularly the assistance provided by Bill Ferguson, Peter Vanstone, Cary Galeschuk, Cliff Duke and Shane Moran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Grégoire.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Lichtervelde, M., Grégoire, M., Linnen, R.L. et al. Trace element geochemistry by laser ablation ICP-MS of micas associated with Ta mineralization in the Tanco pegmatite, Manitoba, Canada. Contrib Mineral Petrol 155, 791–806 (2008). https://doi.org/10.1007/s00410-007-0271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0271-z

Keywords

Navigation