Skip to main content
Log in

The peculiar elongational viscosity of concentrated solutions of monodisperse PMMA in oligomeric MMA

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Concentrated solutions of nearly monodisperse poly(methyl methacrylate), PMMA-270k and PMMA-86k, in oligo(methyl methacrylate), MMA o-4k and MMA o-2k, investigated by Wingstrand et al. (Phys Rev Lett 115:078302, 2015) and Wingstrand (2015) do not follow the linear-viscoelastic scaling relations of monodisperse polystyrenes (PS) dissolved in oligomeric styrene (Wagner in Rheol Acta 53:765–777, 2014a, in Non-Newtonian Fluid Mech 222:121–131, 2014b; Wagner et al. in J Rheol 59:1113–1130, 2015). Rather, PMMA-270k shows an attractive interaction with MMA, in contrast to the interaction of PMMA-86k and MMA. This different behavior can be traced back to different tacticities of the two polymers. The attractive interaction of PMMA-270k with o-4k creates pseudo entanglements, which increase the interchain tube pressure, and therefore, the solution PMMA-270k/o-4k shows, as reported by Wingstrand et al. (Phys Rev Lett 115:078302, 2015), qualitatively a similar scaling of the elongational viscosity with \( {\left(\dot{\varepsilon}{\tau}_R\right)}^{-1/2} \) as observed for polystyrene melts. For the solution PMMA-270/o-2k, this effect is only seen at the highest elongation rates investigated. The elongational viscosity of PMMA-86k dissolved in oligomeric MMA is determined by the Rouse time of the melt, as in the case of polystyrene solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bach A, Almdal K, Rasmussen HK, Hassager O (2003) Elongational viscosity of narrow molar mass distribution polystyrene. Macromolecules 36:5174–5179

    Article  Google Scholar 

  • Baumgaertel M, Schausberger A, Winter HH (1990) The relaxation of polymers with linear flexible chains of uniform length. Rheol Acta 29:400–408

    Article  Google Scholar 

  • Bhattacharjee PK, Oberhauser JP, McKinley GH, Leal LG, Sridhar T (2002) Extensional rheometry of entangled solutions. Macromolecules 35:10131–10148

    Article  Google Scholar 

  • Bhattacharjee PK, Nguyen DA, McKinley GH, Sridhar T (2003) Extensional stress growth and stress relaxation in entangled polymer solutions. J Rheol 47:269–290

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Fang J, Kröger M, Öttinger HC (2000) A thermodynamically admissible reptation model for fast flows of entangled polymers. II. Model predictions for shear and extensional flows. J Rheol 44:1293–1317

    Article  Google Scholar 

  • Fetters LJ, Lohse DJ, Graessley WW (1999) Chain dimensions and entanglement spacings in dense macromolecular systems. J Polym Sci B Polym Phys 37:1023–1033

    Article  Google Scholar 

  • Fuchs K, Friedrich C, Weese J (1996) Viscoelastic properties of narrow-distribution poly(methyl methacrylates). Macromolecules 29:5893–5901

    Article  Google Scholar 

  • Hassager O (2004) Polymer fluid mechanics: molecular orientation and stretching. Proc. XIVth Int. Congress on Rheology, NF01

  • Huang Q, Mednova O, Rasmussen HK, Alvarez NJ, Skov AL, Almdal K, Hassager O (2013a) Concentrated polymer solutions are different from melts: role of entanglement molecular weight. Macromolecules 46:5026–5035

    Article  Google Scholar 

  • Huang Q, Alvarez NJ, Matsumiya Y, Rasmussen HK, Watanabe H, Hassager O (2013b) Extensional rheology of entangled polystyrene solutions suggests importance of nematic interactions. ACS Macro Lett 2:741–744

    Article  Google Scholar 

  • Ianniruberto G, Brasiello A, Marrucci G (2012) Simulations of fast shear flows of PS oligomero confirm monomeric fiction reduction in fast elongational flows of monodisperse PSmelts indicated ny rheooptical data. Macromolecules 45:8058–8066

    Article  Google Scholar 

  • Isaki T, Takahashi M, Urakawa O (2003) Biaxial damping function of entangled monodisperse polystyrene melts: comparison with the Mead-Larson-Doi model. J Rheol 47:1201–1210

    Article  Google Scholar 

  • Marrucci G, de Cindio B (1980) The stress relaxation of molten PMMA at large deformations and its theoretical interpretation. Rheol Acta 19:68–75. https://doi.org/10.1007/BF01523856

  • Marrucci G, Ianniruberto G (2004) Interchain pressure effect in extensional flows of entangled polymer melts. Macromolecules 37:3934–3942

    Article  Google Scholar 

  • Marrucci G, Ianniruberto G (2005) Modelling nonlinear polymer rheology is still challenging. Korea-Aust Rheol J 17(3):111–116

    Google Scholar 

  • McKinley G, Sridhar T (2002) Filament-stretching rheometry of complex fluids. Annu Rev Fluid Mech 34:375–415

    Article  Google Scholar 

  • McLeish TCB, Larson RG (1998) Molecular constitutive equations for a class of branched polymers: the pom-pom polymer. J Rheology 42:81–110. https://doi.org/10.1122/1.550933

  • Mead DW, Yavich D, Leal LG (1995) The reptation model with segmental stretch II. Steady state properties. Rheol Acta 34:360–383

    Article  Google Scholar 

  • Mead DW, Larson RG, Doi M (1998) A molecular theory for fast flows of entangled polymers. Macromolecules 31:7895–7914

    Article  Google Scholar 

  • Menezes E, Graessley W (1982) Nonlinear rheological behavior of polymer systems for several shear-flow histories. J Polym Sci Polym Phys Ed 20:1817–1833

  • Narimissa E, Wagner MH (2016a) A hierarchical multi-mode molecular stress function model for linear polymer melts in extensional flows. J Rheol 60:625–636

    Article  Google Scholar 

  • Narimissa E, Wagner MH (2016b) From linear viscoelasticity to elongational flow of polydisperse polymer melts: the hierarchical multi-mode molecular stress function model. Polymer 104:204–214

    Article  Google Scholar 

  • Narimissa E, Wagner MH (2016c) A hierarchical multi-mode MSF model for long-chain branched polymer melts part III: shear flow. Rheol Acta 55:633–639

    Article  Google Scholar 

  • Narimissa E, Rolón-Garrido VH, Wagner MH (2015) A hierarchical multi-mode MSF model for long-chain branched polymer melts part I: elongational flow. Rheol Acta 54:779–791

    Article  Google Scholar 

  • Narimissa E, Rolón-Garrido VH, Wagner MH (2016) A hierarchical multi-mode MSF model for long-chain branched polymer melts part II: multiaxial extensional flows. Rheol Acta 55:327–333

    Article  Google Scholar 

  • Nielsen JK, Rasmussen HK (2008) Reversed extension flow. J Non-Newtonian Fluid Mech 155:15–19

    Article  Google Scholar 

  • Nielsen JK, Rasmussen HK, Hassager O (2008) Stress relaxation of narrow molar mass distribution polystyrene following uniaxial extension. J Rheol 52:885–899

    Article  Google Scholar 

  • Osaki K, Nishizawa K, Kurata M (1982) Material time constant characterizing the nonlinear viscoelasticity of entangled polymeric systems. Macromolecules 15:1068–1071

    Article  Google Scholar 

  • Pearson DS, Kiss A, Fetters L, Doi M (1989) Flow-induced birefringence of concentrated polyisoprene solutions. J Rheol 33:517–535

    Article  Google Scholar 

  • Rolón-Garrido VH, Wagner MH, Luap C, Schweizer T (2006) Modeling non-Gaussian extensibility effects in elongation of nearly monodisperse polystyrene melts. J Rheol 50:327–340

    Article  Google Scholar 

  • Shahid T, Huang Q, Oosterlinck F, Clasena C, van Ruymbeke E (2017) Dynamic dilution exponent in monodisperse entangled polymer solutions. Soft Matter 13:269–282

    Article  Google Scholar 

  • Takahashi M, Isaki T, Takigawa T, Masuda T (1993) Measurement of biaxial and uniaxial extensional flow behavior of polymer melts at constant strain rates. J Rheol 37:827–846

    Article  Google Scholar 

  • Wagner MH (2011) The effect of dynamic tube dilation on chain stretch in nonlinear polymer melt rheology. J Non-Newtonian Fluid Mech 166:915–194

    Article  Google Scholar 

  • Wagner MH (2014a) Scaling relations for elongational flow of polystyrene melts and concentrated solutions of polystyrene in oligomeric styrene. Rheol Acta 53:765–777

    Article  Google Scholar 

  • Wagner MH (2014b) An extended interchain tube pressure model for elongational flow of polystyrene melts and concentrated solutions. J Non-Newtonian Fluid Mech 222:121–131

    Article  Google Scholar 

  • Wagner MH, Rolón-Garrido VH (2009a) Recent advances in constitutive modeling of polymer melts. Novel trends in rheology III (AIP Conference Proceedings 1152, ed. M. Zatloukal, American Institute of Physics), p 16–31

  • Wagner MH, Rolón-Garrido VH (2009b) Nonlinear rheology of linear polymer melts: modeling chain stretch by interchain tube pressure and rouse time. Korea-Aust Rheol J 21:203–211

    Google Scholar 

  • Wagner MH, Schaeffer J (1992) Nonlinear strain measures for general biaxial extension of polymer melts. J Rheol 36:1–26

    Article  Google Scholar 

  • Wagner MH, Schaeffer J (1993) Rubbers and polymer melts: universal aspects of non-linear stress-strain relations. J Rheol 37:643–661

    Article  Google Scholar 

  • Wagner MH, Schaeffer J (1994) Assessment of non-linear strain measures for extensional and shearing flows of polymer melts. Rheol Acta 33:506–516

    Article  Google Scholar 

  • Wagner MH, Rubio P, Bastian H (2001) The molecular stress function model for polydisperse and polymer melts with dissipative convective constraint release. J Rheol 45:1387–1412

    Article  Google Scholar 

  • Wagner MH, Kheirandish S, Hassager O (2005) Quantitative prediction of transient and steady-state elongational viscosity of nearly monodisperse polystyrene melts. J Rheol 49:1317–1327

    Article  Google Scholar 

  • Wagner MH, Rolón-Garrido VH, Nielsen JK, Rasmussen HK, Hassager O (2008) A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends. J Rheol 52:67–86

    Article  Google Scholar 

  • Wagner MH, Narimissa E, Rolón-Garrido VH (2015) From melt to solution: scaling relations for concentrated polystyrene solutions. J Rheol 59:1113–1130

    Article  Google Scholar 

  • Wingstrand SL (2015) Private communication

  • Wingstrand SL, Alvarez NJ, Huang Q, Hassager O (2015) Linear and nonlinear universality in the rheology of polymer melts and solutions. Phys Res Lett 115:078302

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred H. Wagner.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wagner, M.H., Wingstrandt, S.L., Alvarez, N.J. et al. The peculiar elongational viscosity of concentrated solutions of monodisperse PMMA in oligomeric MMA. Rheol Acta 57, 591–601 (2018). https://doi.org/10.1007/s00397-018-1098-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-018-1098-4

Keywords

Navigation