Skip to main content
Log in

Interdecadal changes of the Indian Ocean subtropical dipole mode

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Using observational data and outputs from an ocean general circulation model, the interdecadal changes in the Indian Ocean subtropical dipole (IOSD) are investigated for the first time. It is found that the frequency of the IOSD has become higher because of a decreasing trend in the mixed layer depth (MLD) over the southwestern pole in January and February. Positive (negative) sea surface temperature (SST) anomalies associated with the IOSD are generated when the mixed layer becomes anomalously shallow (deep). The thinner mixed layer in the recent decade amplifies this effect and even weak atmospheric forcing may trigger the IOSD. From a diagnosis of the Monin–Obukhov depth, it is shown that an increasing trend of surface heat flux, which is due to the decrease of wind speed (increase of specific humidity near the sea surface) associated with the poleward shift of westerly jet in January (the strengthening of Mascarene high in February), causes the decreasing trend of the MLD. On the other hand, the smaller amplitude in the recent decades is because the IOSD starts to develop in December, but the deeper mixed layer in December in the recent decade provides an unfavorable condition for its development. In addition, the shallower mixed layer in January and February may also amplify the negative feedback processes that damp the SST anomalies. Since no interdecadal changes in interannual variability of atmospheric forcing corresponding to that in the IOSD are observed, the interdecadal trend in the MLD is essential for that of the IOSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allan RJ, Lindesay JA, Reason CJC (1995) Multidecadal variability in the climate system over the Indian Ocean region during the austral summer. J Clim 8:1853–1873

    Article  Google Scholar 

  • Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330

    Article  Google Scholar 

  • Boschat G, Terray P, Masson S (2013) Extratropical forcing of ENSO. Geophys Res Lett 40:1605–1611

    Article  Google Scholar 

  • Cai W, Zheng XT, Weller E, Collins M, Cowan T, Lengaigne M, Yu W, Yamagata T (2013) Projected response to the Indian Ocean dipole to greenhouse warming. Nat Geosci. doi:10.1038/NGEO2009

    Google Scholar 

  • Chang P, Yamagata T, Schopf P, Behera SK, Carton J, Kessler WS, Meyers G, Qu T, Schott F, Shetye S, Xie SP (2006) Climate fluctuations of tropical coupled systems—the role of ocean dynamics. J Clim 19:5122–5174

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2007) Mechanisms of summertime subtropical Indian Ocean sea surface temperature variability: On the importance of humidity anomalies and the meridional advection of water vapor. J Clim 20:4835–4852

    Article  Google Scholar 

  • de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378

    Article  Google Scholar 

  • Fauchereau N, Trzaska S, Richard Y, Roucou P, Camberlin P (2003) Sea-surface temperature co-variability in the Southern Atlantic and Indian Oceans and its connections with the atmospheric circulation in the Southern Hemisphere. Int J Climatol 23:663–677

    Article  Google Scholar 

  • Fischer AS, Terray P, Guilyardi E, Gualdi S, Delecluse P (2005) Two independent triggers for the Indian Ocean dipole/zonal mode in a coupled GCM. J Clim 18:3428–3449

    Article  Google Scholar 

  • Hermes JC, Reason CJC (2005) Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic Oceans. J Clim 18:2864–2882

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kataoka T, Tozuka T, Masumoto Y, Yamagata T (2012) The Indian Ocean subtropical dipole mode simulated in the CMIP3 models. Clim Dyn 39:1385–1399

    Article  Google Scholar 

  • Kraus EB, Turner JS (1967) A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19:98–106

    Article  Google Scholar 

  • Kushner PJ, Held IM, Delworth TL (2001) Southern hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249

    Article  Google Scholar 

  • Levitus S, Boyer TP (1994) World Ocean Atlas 1994, vol. 4: Temperature. NOAA Atlas NESDIS 4, pp 117

  • Levitus S, Burgett R, Boyer T (1994) World Ocean Atlas 1994, vol. 3: Salinity. NOAA Atlas NESDIS 3, pp 99

  • McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706. doi:10.1029/2012GL051826

    Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2010) Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Clim Dyn 35:1059–1072

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2012) Subtropical dipole modes simulated in a coupled general circulation model. J Clim 25:4029–4047

    Article  Google Scholar 

  • Morioka Y, Tozuka T, Yamagata T (2013) How is the Indian Ocean subtropical dipole excited? Clim Dyn 41:1955–1968

    Article  Google Scholar 

  • Nan S, Li J (2003) The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys Res Lett 30:2266. doi:10.1029/2003GL018381

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1999) MOM3.0 manual. NOAA/GFDL, pp 680

  • Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956

    Article  Google Scholar 

  • Qiu B, Kelly KA (1993) Upper-ocean heat balance in the Kuroshio extension region. J Phys Oceanogr 23:2027–2041

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton HB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analysis of SST, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108. doi:10.1029/2002JD002670

  • Reason CJC (1998) Warm and cold events in the southeast Atlantic/southwest Indian Ocean region and potential impacts on circulation and rainfall over southern Africa. Meteorol Atmos Phys 69:49–65

    Article  Google Scholar 

  • Reason CJC (2001) Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys Res Lett 28:2225–2227

    Article  Google Scholar 

  • Reason CJC, Allan RJ, Lindesay JA (1996) Dynamical response of the oceanic circulation and temperature to interdecadal variability in the surface winds over the Indian Ocean. J Clim 9:97–114

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sallé JB, Speer KG, Rintoul SR (2010) Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat Geosci 3:273–279

    Article  Google Scholar 

  • Suzuki R, Behera SK, Iizuka S, Yamagata T (2004) Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophys Res 109. doi:10.1029/2003JC001974

  • Terray P (2011) Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn 36:2171–2199

    Article  Google Scholar 

  • Terray P, Delecluse P, Labattu S, Terray L (2003) Sea surface temperature associations with the late Indian summer monsoon. Clim Dyn 21:593–618

    Article  Google Scholar 

  • Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Tozuka T, Cronin MF (2014) Role of mixed layer depth in surface frontogenesis: the Agulhas return current front. Geophys Res Lett 41:2447–2453

    Article  Google Scholar 

  • Tozuka T, Luo JJ, Masson S, Yamagata T (2007) Decadal modulations of the Indian Ocean dipole in the SINTEX-F1 coupled GCM. J Clim 20:2881–2894

    Article  Google Scholar 

  • Tozuka T, Yokoi T, Yamagata T (2010) A modeling study of interannual variations of the Seychelles Dome. J Geophys Res 115:C04005. doi:10.1029/2009JC005547

    Google Scholar 

  • Yamagata T, Behera SK, Luo JJ, Masson S, Jury MR, Rao SA (2004) Coupled ocean–atmosphere variability in the tropical Indian Ocean. In earth’s climate: the ocean-atmosphere interaction. Geophys Monogr Ser 147:189–211

    Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Google Scholar 

  • Yuan C, Tozuka T, Luo JJ, Yamagata T (2014) Predictability of the subtropical dipole modes in a coupled ocean-atmosphere model. Clim Dyn 42:1291–1308

    Article  Google Scholar 

  • Zheng XT, Xie SP, Vecchi GA, Liu Q, Hafner J (2010) Indian Ocean Dipole response to global warming: analysis of ocean-atmospheric feedbacks in a coupled model. J Clim 23:1240–1253

    Article  Google Scholar 

  • Zheng XT, Xie SP, Du Y, Liu L, Huang G, Liu Q (2013) Indian Ocean dipole response to global warming in the CMIP5 multimodel ensemble. J Clim 26:6067–6080

    Article  Google Scholar 

Download references

Acknowledgments

This study is benefited from discussions with Prof. Yukio Masumoto, Dr. Takeshi Doi, and Mr. Takahito Kataoka, and constructive comments provided by two anonymous reviewers. The OGCM was run on SR11000 system of Information Technology Center, the University of Tokyo under the cooperative research with Center for Climate System Research, the University of Tokyo. Wavelet software was provided by C. Torrence and G. Compo, and is available online (http://paos.colorado.edu/research/wavelets/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Yamagami.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagami, Y., Tozuka, T. Interdecadal changes of the Indian Ocean subtropical dipole mode. Clim Dyn 44, 3057–3066 (2015). https://doi.org/10.1007/s00382-014-2202-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2202-9

Keywords

Navigation