Skip to main content

Advertisement

Log in

Sodium fluorescein in pediatric oncological neurosurgery: a pilot study on 50 children

  • Original Article
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Sodium fluorescein (SF) is currently considered a valid intraoperative adjunct in the resection of high-grade brain lesions in adults. Experiences in pediatric groups and in low-grade gliomas and other low-grade lesions are still limited in literature, and subjective evaluation of fluorescence is still a limitation.

Material and methods

This study retrospectively reviewed all patients with brain or spine lesions operated on from September 2021 to July 2022 in the Pediatric Neurosurgery Unit of Hôpital Femme Mère Enfant, Lyon, who had received 5 mg/kg of 10%. Surgery was performed using a YELLOW560 filter at crucial times. At the end of surgery, the first operator completed a questionnaire, including his opinion on whether SF had been useful in tumor resection, recorded as a binary variable. Post hoc, surgical images were reviewed using ImageJ, an open-source Java image processing platform. In order to compare independent discrete variables, we applied the Student’s t test, and we applied the Chi-square or Fisher exact test for binary variables. A threshold of p < 0.05 was set for statistical significance.

Results

We included 50 pediatric patients (0.2–17.6 years old). Forty/50 lesions showed SF uptake (80%). The differentiation between healthy and affected tissue, thanks to SF, subjectively evaluated by the surgeon, had as objective counterpart the statistically significant higher brightness of green in lesions, registered by the software (p < 0.001). SF overall allowed a good differentiation in 33/50 lesions, and overall utility of SF has been noted in 67% of them. When specifically considering gliomas, overall utility reached 75%.

Conclusion

SF is a feasible, safe, and useful intraoperative adjunct in pediatric neurosurgery. In particular, it seems to have a promising role in some low-grade infiltrating glial tumors. The subjective evaluation of fluorescence seems to be reliable with respect to image analyses software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

We the authors commit ourselves to provide all data upon request.

References

  1. Udaka YT, Packer RJ (2018) Pediatric brain tumors. Neurol Clin 36(3):533–556. https://doi.org/10.1016/j.ncl.2018.04.009

    Article  PubMed  Google Scholar 

  2. Hong CS, Ho W, Piazza MG, Ray-Chaudhury A, Zhuang Z, Heiss JD (2016) Characterization of the blood brain barrier in pediatric central nervous system neoplasms. J Interdiscip Histopathol 4(2):29–33. https://doi.org/10.5455/jihp.20160623053540

    Article  PubMed  PubMed Central  Google Scholar 

  3. Thompson DNP (2013) Spinal inclusion cysts. Childs Nerv Syst ChNS OffJ Int Soc Pediatr Neurosurg 29(9):1647–1655. https://doi.org/10.1007/s00381-013-2147-z

  4. Usami K et al (2016) Spinal lipoma of the filum terminale: review of 174 consecutive patients. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 32(7):1265–1272. https://doi.org/10.1007/s00381-016-3072-8

  5. Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P (1996) Effects of medulloblastoma resections on outcome in children: a report from the children’s cancer group. Neurosurgery 38(2):265–271. https://doi.org/10.1097/00006123-199602000-00007

    Article  CAS  PubMed  Google Scholar 

  6. Safaee M et al (2013) Histologic grade and extent of resection are associated with survival in pediatric spinal cord ependymomas. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 29(11):2057–2064. https://doi.org/10.1007/s00381-013-2149-x

  7. Coppola A (2016) Intra-operative neurophysiological mapping and monitoring during brain tumour surgery in children: an update. Childs Nerv Syst 32:1849–1859. https://doi.org/10.1007/s00381-016-3180-5

    Article  PubMed  Google Scholar 

  8. Lohkamp L-N et al (2019) Awake brain surgery in children-review of the literature and state-of-the-art. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 35(11):2071–2077. https://doi.org/10.1007/s00381-019-04279-w

  9. Lohkamp L-N et al (2020) Awake brain surgery in children-a single-center experience. Childs Nerv Syst ChNS Off J Int Soc Pediatr Neurosurg 36(5):967–974. https://doi.org/10.1007/s00381-020-04522-9

  10. Laochamroonvorapongse D, Theard MA, Yahanda AT, Chicoine MR (2021) Intraoperative MRI for adult and pediatric neurosurgery. Anesthesiol Clin 39(1):211–225. https://doi.org/10.1016/j.anclin.2020.11.010

    Article  PubMed  Google Scholar 

  11. El Beltagy MA, Aggag M, Kamal M (2010) Role of intraoperative ultrasound in resection of pediatric brain tumors. Childs Nerv Syst 26(9):1189–1193. https://doi.org/10.1007/s00381-010-1091-4

    Article  PubMed  Google Scholar 

  12. Schwake M, Schipmann S, Müther M, Köchling M, Brentrup A, Stummer W (2019) 5-ALA fluorescence-guided surgery in pediatric brain tumors-a systematic review. Acta Neurochir (Wien) 161(6):1099–1108. https://doi.org/10.1007/s00701-019-03898-1

    Article  PubMed  Google Scholar 

  13. Moore GE (1947) Fluorescein as an agent in the differentiation of normal and malignant tissues. Science 106(2745):130–131. https://doi.org/10.1126/science.106.2745.130-a

    Article  CAS  PubMed  Google Scholar 

  14. Diaz RJ et al (2015) Study of the biodistribution of fluorescein in glioma-infiltrated mouse brain and histopathological correlation of intraoperative findings in high-grade gliomas resected under fluorescein fluorescence guidance. J Neurosurg 122(6):1360–1369. https://doi.org/10.3171/2015.2.JNS132507

    Article  PubMed  Google Scholar 

  15. Smith EJ, Gohil K, Thompson CM, Naik A, Hassaneen W (2021) Fluorescein-guided resection of high grade gliomas: a meta-analysis. World Neurosurg 155:181-188.e7. https://doi.org/10.1016/j.wneu.2021.08.126

    Article  PubMed  Google Scholar 

  16. Schebesch K-M et al (2015) Fluorescein sodium-guided surgery in cerebral lymphoma. Clin Neurol Neurosurg 139:125–128. https://doi.org/10.1016/j.clineuro.2015.09.015

    Article  PubMed  Google Scholar 

  17. da Silva CE, da Silva VD, da Silva JLB (2014) Skull base meningiomas and cranial nerves contrast using sodium fluorescein: a new application of an old tool. J Neurol Surg Part B Skull Base 75(4):255–260. https://doi.org/10.1055/s-0034-1372466

    Article  Google Scholar 

  18. Minkin K et al (2016) Intraoperative fluorescein staining for benign brain tumors. Clin Neurol Neurosurg 149:22–26. https://doi.org/10.1016/j.clineuro.2016.07.016

    Article  PubMed  Google Scholar 

  19. Höhne J et al (2020) Lighting up the tumor—fluorescein-guided resection of gangliogliomas. J Clin Med 9(8):2405. https://doi.org/10.3390/jcm9082405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen Z et al (2022) The application of fluorescein sodium for the resection of medulloblastoma. J Neurooncol 158(3):463–470. https://doi.org/10.1007/s11060-022-04035-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Falco J et al (2022) Fluorescein-guided surgery for the resection of pilocytic astrocytomas: a multicentric retrospective study. Front Oncol 12:943085. https://doi.org/10.3389/fonc.2022.943085

    Article  PubMed  PubMed Central  Google Scholar 

  22. Erdman CM, Christie C, Iqbal MO, Mazzola CA, Tomycz L (2021) The utilization of sodium fluorescein in pediatric brain stem gliomas: a case report and review of the literature. Childs Nerv Syst 37(5):1753–1758. https://doi.org/10.1007/s00381-020-04857-3

    Article  PubMed  Google Scholar 

  23. Göker B, Kırış T (2019) Sodium fluorescein–guided brain tumor surgery under the YELLOW-560-nm surgical microscope filter in pediatric age group: feasibility and preliminary results. Childs Nerv Syst 35(3):429–435. https://doi.org/10.1007/s00381-018-04037-4

    Article  PubMed  Google Scholar 

  24. Jacquesson T et al (2013) Exérèse neurochirurgicale optimale des gliomes de haut grade guidée par fluorescence : mise au point à partir d’une série rétrospective de 22 patients. Neurochirurgie 59(1):9–16. https://doi.org/10.1016/j.neuchi.2012.07.002

    Article  CAS  PubMed  Google Scholar 

  25. Kalamarides M, Bernat I, Peyre M (2019) Extracapsular dissection in peripheral nerve schwannoma surgery using bright light and fluorescein sodium visualization: case series. Acta Neurochir (Wien) 161(12):2447–2452. https://doi.org/10.1007/s00701-019-04071-4

    Article  PubMed  Google Scholar 

  26. Pedro MT, Grübel N, Durner G, Pala A, Wirtz CR, Koenig RW (2021) Intraoperative sodium-fluorescence imaging in peripheral nerve sheath tumors (PNST)—a new additional promising diagnostic tool. Front Oncol 11:655392. https://doi.org/10.3389/fonc.2021.655392

    Article  PubMed  PubMed Central  Google Scholar 

  27. The jamovi project (2021) jamovi (Version 1.6) [Computer Software]. https://www.jamovi.org. Accessed 30 Oct 2022

  28. Acerbi F et al (2018) Fluorescein-guided surgery for resection of high-grade gliomas: a multicentric prospective phase ii study (FLUOGLIO). Clin Cancer Res 24(1):52–61. https://doi.org/10.1158/1078-0432.CCR-17-1184

    Article  PubMed  Google Scholar 

  29. Falco J et al (2019) Fluorescein application in cranial and spinal tumors enhancing at preoperative MRI and operated with a dedicated filter on the surgical microscope: preliminary results in 279 patients enrolled in the FLUOCERTUM prospective study. Front Surg 6:49. https://doi.org/10.3389/fsurg.2019.00049

    Article  PubMed  PubMed Central  Google Scholar 

  30. Almojuela A et al (2020) Using fluorescein in the resection of a pediatric posterior fossa tumor. Can J Neurol Sci J Can Sci Neurol 47(4):578–580. https://doi.org/10.1017/cjn.2020.52

    Article  Google Scholar 

  31. Gulsuna B, Turkmen T, Borcek AO, Celtikci E (2020) Fluorescein-guided excision of a pediatric intraparenchymal schwannoma presenting with seizure and neurogenic pulmonary edema. Childs Nerv Syst 36(5):1075–1078. https://doi.org/10.1007/s00381-019-04438-z

    Article  PubMed  Google Scholar 

  32. Dilek O, Ihsan A, Tulay H (2011) Anaphylactic reaction after fluorescein sodium administration during intracranial surgery. J Clin Neurosci 18(3):430–431. https://doi.org/10.1016/j.jocn.2010.06.012

    Article  PubMed  Google Scholar 

  33. Anari S, Waldron M, Carrie S (2007) Delayed absence seizure: a complication of intrathecal fluorescein injection: a case report and literature review. Auris Nasus Larynx 34(4):515–518. https://doi.org/10.1016/j.anl.2006.09.012

    Article  PubMed  Google Scholar 

  34. Alkan Z, Cakir BO, Kilinç BM, Turgut S (2004) [Grand mal seizure following intrathecal fluorescein use], Kulak Burun Bogaz Ihtis. Derg KBB J Ear Nose Throat 13(3–4):80–83

    Google Scholar 

  35. Park K-Y, Kim YB (2007) A Case of Myelopathy after Intrathecal Injection of Fluorescein. J Korean Neurosurg Soc 42(6):492–494. https://doi.org/10.3340/jkns.2007.42.6.492

    Article  PubMed  PubMed Central  Google Scholar 

  36. Barry RE, Behrendt WA (1985) Studies on the pharmacokinetics of fluorescein and its dilaurate ester under the conditions of the fluorescein dilaurate test. Arzneimittelforschung 35(3):644–648

    CAS  PubMed  Google Scholar 

  37. Acerbi F, Broggi M, Broggi G, Ferroli P (2015) What is the best timing for fluorescein injection during surgical removal of high-grade gliomas? Acta Neurochir (Wien) 157(8):1377–1378. https://doi.org/10.1007/s00701-015-2455-z

    Article  PubMed  Google Scholar 

  38. Schupper AJ et al (2021) Fluorescence-guided surgery: a review on timing and use in brain tumor surgery. Front Neurol 12:682151. https://doi.org/10.3389/fneur.2021.682151

    Article  PubMed  PubMed Central  Google Scholar 

  39. Acerbi F et al (2017) Fluorescein-guided resection of intramedullary spinal cord tumors: results from a preliminary, multicentric, retrospective study. World Neurosurg 108:603–609. https://doi.org/10.1016/j.wneu.2017.09.061

    Article  PubMed  Google Scholar 

  40. Neira JA et al (2017) Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance. J Neurosurg 127(1):111–122. https://doi.org/10.3171/2016.7.JNS16232

    Article  PubMed  Google Scholar 

  41. Bowden SG et al (2018) Sodium fluorescein facilitates guided sampling of diagnostic tumor tissue in nonenhancing gliomas. Neurosurgery 82(5):719–727. https://doi.org/10.1093/neuros/nyx271

    Article  PubMed  Google Scholar 

  42. Fiorindi A, Boaro A, Del Moro G, Longatti P (2017) Fluorescein-guided neuroendoscopy for intraventricular lesions: a case series. Oper Neurosurg 13(2):173–181. https://doi.org/10.1093/ons/opw008

    Article  Google Scholar 

  43. Bongetta D, Zoia C, Pugliese R, Adinolfi D, Silvani V, Gaetani P (2016) Low-cost fluorescein detection system for high-grade glioma surgery. World Neurosurg 88:54–58. https://doi.org/10.1016/j.wneu.2016.01.017

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Federico Di Rocco and Camilla de Laurentis contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Camilla de Laurentis; Federico Di Rocco, Matthieu Vinchon, and Alexandru Szathmari supervised the process. The first draft of the manuscript was written by Camilla de Laurentis and Federico Di Rocco, and all the authors (Fred Bteich, Pierre Aurélien Beuriat, Laryssa Crystinne Azevedo Almeida, Sylvie Combet, Carmine Mottolese, Matthieu Vinchon, Alexandru Szathmari) commented on previous versions of the manuscript. All the authors (Camilla de Laurentis, Fred Bteich, Pierre Aurélien Beuriat, Laryssa Crystinne Azevedo Almeida, Sylvie Combet, Carmine Mottolese, Matthieu Vinchon, Alexandru Szathmari, Federico Di Rocco) read and approved the final manuscript.

Corresponding author

Correspondence to Federico Di Rocco.

Ethics declarations

Ethics approval and consent to participate

This retrospective study was submitted to and approved by our institutional ethics committee, IRB de Neurochirurgie, no. IRB00011687, Collège de Neurochirurgie IRB #1: 2022/46. Parental informed consent was obtained.

Consent for publication

Not applicable (anonymization of data).

Conflict of interest

We the authors declare having no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Laurentis, C., Bteich, F., Beuriat, P.A. et al. Sodium fluorescein in pediatric oncological neurosurgery: a pilot study on 50 children. Childs Nerv Syst 39, 1473–1484 (2023). https://doi.org/10.1007/s00381-022-05765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-022-05765-4

Keywords

Navigation