Skip to main content

Advertisement

Log in

Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

Cardiovascular disease is the leading cause of death in patients with end-stage renal disease (ESRD). The aim of this study was to investigate the changes in cardiovascular function induced by a single session of hemodialysis (HD) by the analysis of cardiovascular dynamics using wave intensity wall analysis (WIWA) and of systolic and diastolic myocardial function using tissue velocity imaging (TVI). Gray-scale cine loops of the left common carotid artery, conventional echocardiography, and TVI images of the left ventricle were acquired before and after HD in 45 patients (17 women, mean age 54 years) with ESRD. The WIWA indexes, W1 and preload-adjusted W1, W2 and preload-adjusted W2, and the TVI variables, isovolumic contraction velocity (IVCV), isovolumic contraction time (IVCT), peak systolic velocity (PSV), displacement, isovolumic relaxation velocity (IVRV), isovolumic relaxation time (IVRT), peak early diastolic velocity (E′), and peak late diastolic velocity (A′), were compared before and after HD. The WIWA measurements showed significant increases in W1 (P < 0.05) and preload-adjusted W1 (P < 0.01) after HD. W2 was significantly decreased (P < 0.05) after HD, whereas the change in preload-adjusted W2 was not significant. Systolic velocities, IVCV (P < 0.001) and PSV (P < 0.01), were increased after HD, whereas the AV-plane displacement was decreased (P < 0.01). For the measured diastolic variables, E′ was significantly decreased (P < 0.01) and IVRT was significantly prolonged (P < 0.05), after HD. A few correlations were found between WIWA and TVI variables. The WIWA and TVI measurements indicate that a single session of HD improves systolic function. The load dependency of the diastolic variables seems to be more pronounced than for the systolic variables. Preload-adjusted wave intensity indexes may contribute in the assessment of true LV contractility and relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Levey A, Eknoyan G (1999) Cardiovascular disease in chronic renal disease. Nephrol Dial Transplant 14:828–833

    Article  PubMed  CAS  Google Scholar 

  2. Chaignon M, Chen W, Tarazi R, Nakamoto S, Salcedo E (1982) Acute effects of hemodialysis on echographic-determined cardiac performance: improved contractility resulting from serum increased calcium with reduced potassium despite hypovolemic-reduced cardiac output. Am Heart J 103:374–378

    Article  PubMed  CAS  Google Scholar 

  3. Gilmartin J, Duffy B, Finnegan P, McCready N (1983) Non invasive study of left ventricular function in chronic renal failure before and after hemodialysis. Clin Nephrol 20:55–60

    PubMed  CAS  Google Scholar 

  4. Tomson C (1990) Echocardiographic assessment of systolic function in dialysis patients. Nephrol Dial Transplant 5:325–331

    PubMed  CAS  Google Scholar 

  5. Hayashi SY, Brodin L-Å, Alvestrand A, Lind B, Stenvinkel P, Nascimento MMd, Qureshi AR, Saha S, Lindholm B, Seeberger A (2004) Improvement of cardiac function after haemodialysis. Quantitative evaluation by colour tissue velocity imaging. Nephrol Dial Transplant 19:1497–1506

    Article  PubMed  Google Scholar 

  6. Oğuzhan A, Arınç H, Abacı A, Topsakal R, Eryol NK, Özdoğru İ, Basar E, Ergin A (2005) Preload dependence of Doppler tissue imaging derived indexes of left ventricular diastolic function. Echocardiography 22:320–325

    Article  PubMed  Google Scholar 

  7. Blacher J, Guerin AP, Pannier B, Marchais SJ, Safar ME, London GM (1999) Impact of aortic stiffness on survival in end-stage renal disease. Circulation 99:2434–2439

    PubMed  CAS  Google Scholar 

  8. Guerin AP, Blacher J, Pannier B, Marchais SJ, Safar ME, London GM (2001) Impact of aortic stiffness attenuation on survival of patients in end-stage renal failure. Circulation 103:987–992

    PubMed  CAS  Google Scholar 

  9. Vuurmans JLT, Boer WH, Bos W-JW, Blankestijn PJ, Koomans HA (2002) Contribution of volume overload and angiotensin II to the increased pulse wave velocity of hemodialysis patients. J Am Soc Nephrol 13:177–183

    Google Scholar 

  10. Covic A, Goldsmith DJA, Panaghiu L, Covic M, Sedor J (2000) Analysis of the effect of hemodialysis on peripheral and central arterial pressure waveforms. Kidney Int 57:2634–2643

    Article  PubMed  CAS  Google Scholar 

  11. Kosch M, Levers A, Barenbrock M, Matzkies F, Schaefer RM, Kisters K, Rahn K-H, Hausberg M (2001) Acute effects of haemodialysis on endothelial function and large artery elasticity. Nephrol Dial Transplant 16:1663–1668

    Article  PubMed  CAS  Google Scholar 

  12. Lin Y, Yu W, Chen C (2005) Acute vs chronic volume overload on arterial stiffness in haemodialysis patients. J Hum Hypertens 19:425–427

    Article  PubMed  Google Scholar 

  13. Parker K, Jones C (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326

    Article  PubMed  CAS  Google Scholar 

  14. Harada A, Okada T, Sugawara M, Niki K (2000) Development of a non-invasive real-time measurement system of wave intensity. IEEE Ultrasonics Symp 1517–1520

  15. Larsson M, Bjällmark A, Lind B, Balzano R, Peolsson M, Winter R, Brodin L-Å (2009) Wave intensity wall analysis––a novel non invasive method to measure wave intensity. Heart Vessels 24:357–365

    Article  PubMed  Google Scholar 

  16. Ohte N, Narita H, Sugawara M, Niki K, Okada T, Harada A, Hayano J, Kimura G (2003) Clinical usefulness of carotid arterial wave intensity in assessing left ventricular systolic and early diastolic performance. Heart Vessels 18:107–111

    Article  PubMed  Google Scholar 

  17. Sugawara M, Niki K, Ohte N, Okada T, Harada A (2009) Clinical usefulness of wave intensity analysis. Med Biol Eng Comput 47:197–206

    Article  PubMed  Google Scholar 

  18. Little W (1985) The left ventricular dP/dt max-end-diastolic volume relation in closed-chest dogs. Circ Res 56:808–815

    PubMed  CAS  Google Scholar 

  19. Nakayama M, Itoh H, Oikawa K, Tajima A, Koike A, Aizawa T, Fu L, Miyake F (2005) Preload-adjusted 2 wave-intensity peaks reflect simultaneous assessment of left ventricular contractility and relaxation. Circulation journal 69:683–687

    Article  PubMed  Google Scholar 

  20. Sugawara M, Uchida K, Kondoh Y, Magosaki N, KN K, Jones C, Sugimachi M, Sunagawa K (1997) Aortic blood momentum––the more the better for the ejecting heart in vivo? Cardiovasc Res 33:433–446

    Article  PubMed  CAS  Google Scholar 

  21. Lind B, Nowak J, Cain P, Quintana M, Brodin L-Å (2004) Left ventricular isovolumic velocity and duration variables calculated from colour-coded myocardial velocity images in normal individuals. Eur J Echocardiogr 5:284–293

    Article  PubMed  CAS  Google Scholar 

  22. Chrysohoou C, Pitsavos C, Barbetseas J, Kotroyiannis I, Brili S, Vasiliadou K, Papadimitriou L, Stefanadis C (2009) Chronic systemic inflammation accompanies impaired ventricular diastolic function, detected by Doppler imaging, in patients with newly diagnosed systolic heart failure (Hellenic Heart Failure Study). Heart Vessels 24:22–26

    Article  PubMed  Google Scholar 

  23. Gunes Y, Guntekin U, Tuncer M, Sahin M (2009) Improved left and right ventricular functions with trimetazidine in patients with heart failure: a tissue Doppler study. Heart Vessels 24:277–282

    Article  PubMed  Google Scholar 

  24. Duan YY, Harada K, Toyono M, Ishii H, Tamura M, Takada G (2006) Effects of acute preload reduction on myocardial velocity during isovolumic contraction and myocardial acceleration in pediatric patients. Pediatr Cardiol 27:32–36

    Article  PubMed  Google Scholar 

  25. Suga H, Sagawa K, Shoukas A (1973) Load independence of the instantaneous pressure–volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circ Res 32:314–322

    PubMed  CAS  Google Scholar 

  26. Kass D, Beyar R (1991) Evaluation of contractile state by maximal ventricular power divided by the square of end-diastolic volume. Circulation 84:1698–1708

    PubMed  CAS  Google Scholar 

  27. Drighil A, Madias JE, Mathewson JW, Mosalami HE, Badaoui NE, Ramdani B, Bennis A (2008) Haemodialysis: effects of acute decrease in preload on tissue Doppler imaging indices of systolic and diastolic function of the left and right ventricles. Eur J Echocardiogr 9:530–535

    Article  PubMed  Google Scholar 

  28. Graham R, Gelman J, Donelan L, Mottram P, Peverill R (2003) Effect of preload reduction by haemodialysis on new indices of diastolic function. Clin Sci 105:395–397

    Article  Google Scholar 

  29. Gaballa M, Lind B, Storaa C, Brodin L-Å (2001) Intra-and Interobserver reproducibility in off-line extracted cardiac tissue Doppler velocity measurements and derived variables. In: Engineering in Medicine and Biology Society. Proceedings of the 23rd Annual International Conference of the IEEE, vol 1, pp 160–162

  30. Cho G-Y, Chan J, Leano R, Strudwick M, Marwick TH (2006) Comparison of two-dimensional speckle and tissue velocity based strain and validation with harmonic phase magnetic resonance imaging. Am J Cardiol 97:1661–1666

    Article  PubMed  Google Scholar 

  31. Sjøli B, Ørn S, Grenne B, Ihlen H, Edvardsen T, Brunvand H (2009) Diagnostic capability and reproducibility of strain by Doppler and by speckle tracking in patients with acute myocardial infarction. JACC Cardiovasc Imaging 2:24–33

    Article  PubMed  Google Scholar 

  32. Niki K, Sugawara M, Chang D, Harada A, Okada T, Sakai R, Uchida K, Tanaka R, Mumford CE (2002) A new noninvasive measurement system for wave intensity: evaluation of carotid arterial wave intensity and reproducibility. Heart Vessels 17:12–21

    Article  PubMed  Google Scholar 

  33. Fraser A, Payne N, Mädler C, Janerot-Sjøberg B, Lind B, Grocott-Mason R, Ionescu A, Florescu N, Wilkenshoff U, Lancellotti P, Wütte M, Brodin L, Investigators M (2003) Feasibility and reproducibility of off-line tissue Doppler measurement of regional myocardial function during dobutamine stress echocardiography. Eur J Echocardiogr 4:43–53

    Article  PubMed  CAS  Google Scholar 

  34. Schuster P, Faerestrand S, Ohm O, Martens D, Torkildsen R, Øyehaug O (2004) Feasibility of color Doppler tissue velocity imaging for assessment of regional timing of left ventricular longitudinal movement. Scand Cardiovasc J 38:39–45

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Swedish Heart-Lung Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Bjällmark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjällmark, A., Larsson, M., Nowak, J. et al. Effects of hemodialysis on the cardiovascular system: quantitative analysis using wave intensity wall analysis and tissue velocity imaging. Heart Vessels 26, 289–297 (2011). https://doi.org/10.1007/s00380-010-0050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-010-0050-z

Keywords

Navigation