Skip to main content
Log in

Retinal OCT biomarkers and their association with cognitive function—clinical and AI approaches

Retinale OCT-Biomarker und ihr Zusammenhang mit kognitiven Funktionen – klinische Praxis und KI-Ansätze. Englische Version

  • Leitthema
  • Published:
Die Ophthalmologie Aims and scope Submit manuscript

The Original Article was published on 29 January 2024

Abstract

Retinal optical coherence tomography (OCT) biomarkers have the potential to serve as early, noninvasive, and cost-effective markers for identifying individuals at risk for cognitive impairments and neurodegenerative diseases. They may also aid in monitoring disease progression and evaluating the effectiveness of interventions targeting cognitive decline. The association between retinal OCT biomarkers and cognitive performance has been demonstrated in several studies, and their importance in cognitive assessment is increasingly being recognized. Machine learning (ML) is a branch of artificial intelligence (AI) with an exponential number of applications in the medical field, particularly its deep learning (DL) subset, which is widely used for the analysis of medical images. These techniques efficiently deal with novel biomarkers when their outcome for the applications of interest is unclear, e.g., for diagnosis, prognosis prediction, disease staging, or any other relevance to clinical practice. However, using AI-based tools for medical purposes must be approached with caution, despite the many efforts to address the black-box nature of such approaches, especially due to the general underperformance in datasets other than those used for their development. Retinal OCT biomarkers are promising as potential indicators for decline in cognitive function. The underlying mechanisms are currently being explored to gain deeper insights into this relationship linking retinal health and cognitive function. Insights from neurovascular coupling and retinal microvascular changes play an important role. Further research is needed to establish the validity and utility of retinal OCT biomarkers as early indicators of cognitive decline and neurodegenerative diseases in routine clinical practice. Retinal OCT biomarkers could then provide a new avenue for early detection, monitoring and intervention in cognitive impairment with the potential to improve patient care and outcomes.

Zusammenfassung

Retinale optische Kohärenztomographie (OCT)-Biomarker haben das Potenzial, als frühzeitige, nichtinvasive und kosteneffiziente Marker, Personen mit einem Risiko für kognitive Beeinträchtigungen und neurodegenerative Erkrankungen zu identifizieren. Sie können auch bei der Überwachung des Krankheitsverlaufs inklusive der Wirksamkeit von Maßnahmen gegen den kognitiven Verfall unterstützen. Der Zusammenhang zwischen retinalen OCT-Biomarkern und kognitiver Leistung wurde in mehreren Studien nachgewiesen, und ihre Bedeutung für die kognitive Beurteilung wird zunehmend anerkannt. Das maschinelle Lernen (ML) ist ein Zweig der künstlichen Intelligenz (KI) mit einer exponentiellen Anzahl von Anwendungen im medizinischen Bereich, insbesondere aus deren Untergruppe des tiefen Lernens (Deep Learning [DL]), die weithin für die Analyse medizinischer Bilder verwendet wird. Diese Techniken sind effizient im Umgang mit neuartigen Biomarkern, wenn deren Ergebnis für die im Fokus stehende Anwendung unklar ist. Der Einsatz von KI-basierten Werkzeugen für medizinische Zwecke muss jedoch, trotz der vielen Bemühungen den Blackbox-Charakter solcher Ansätze zu überwinden, mit Vorsicht genossen werden, v. a. wegen der allgemein unzureichenden Leistung der KI bei anderen Datensätzen als denen, die für ihre Entwicklung verwendet wurden. Die retinalen OCT-Biomarker sind vielversprechend als potenzielle Indikatoren für die kognitive Funktion. Die zugrunde liegenden Mechanismen werden aktuell erforscht, um tiefere Einblicke in die Beziehung zu gewinnen, welche Netzhautgesundheit und kognitive Funktion miteinander verbindet. Erkenntnisse aus neurovaskulärer Kopplung und den mikrovaskulären Veränderungen der Netzhaut spielen dabei eine wichtige Rolle. Weitere Forschungsarbeiten sind erforderlich, um die Gültigkeit und den Nutzen retinaler OCT-Biomarker als Frühindikatoren für kognitiven Abbau und neurodegenerative Erkrankungen in der klinischen Routine zu ermitteln. Retinale OCT-Biomarker könnten so die Patientenversorgung mittels Früherkennung und Überwachung potentieller Intervention bei kognitiven Beeinträchtigungen verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ward DD, Mauschitz MM, Bönniger MM, Merten N, Finger RP, Breteler MMB (2020) Association of retinal layer measurements and adult cognitive function: a population-based study. Neurology 95(9):e1144–e1152. https://doi.org/10.1212/wnl.0000000000010146

    Article  CAS  PubMed  Google Scholar 

  2. Mutlu U, Colijn JM, Ikram MA, Bonnemaijer PWM, Licher S, Wolters FJ, Tiemeier H, Koudstaal PJ, Klaver CCW, Ikram MK (2018) Association of retinal neurodegeneration on optical coherence tomography with dementia: a population-based study. JAMA Neurol 75(10):1256. https://doi.org/10.1001/jamaneurol.2018.1563

    Article  PubMed  PubMed Central  Google Scholar 

  3. McCann P, Hogg R, Wright DM, Chakravarthy U, Peto T, Cruise S, McGuinness B, Young IS, Kee F, Azuara-Blanco A (2021) Intraocular pressure and circumpapillary retinal nerve fibre layer thickness in the Northern Ireland Cohort for the Longitudinal Study of Ageing (NICOLA): distributions and associations. Br J Ophthalmol 105(7):948–956. https://doi.org/10.1136/bjophthalmol-2020-316499

    Article  PubMed  Google Scholar 

  4. Ko F, Muthy ZA, Gallacher J, Sudlow C, Rees G, Yang Q, Keane PA, Petzold A, Khaw PT, Reisman C, Strouthidis NG, Foster PJ, Patel PJ, Consortium, U. B. E. & V. (2018) Association of retinal nerve fiber layer thinning with current and future cognitive decline: a study using optical coherence tomography. JAMA Neurol 75(10):1198. https://doi.org/10.1001/jamaneurol.2018.1578

    Article  PubMed  PubMed Central  Google Scholar 

  5. Méndez-Gómez JL, Rougier M‑B, Tellouck L, Korobelnik J‑F, Schweitzer C, Delyfer M‑N, Amieva H, Dartigues J‑F, Delcourt C, Helmer C (2017) Peripapillary retinal nerve fiber layer thickness and the evolution of cognitive performance in an elderly population. Front Neurol 8:93. https://doi.org/10.3389/fneur.2017.00093

    Article  PubMed  PubMed Central  Google Scholar 

  6. Khawaja AP, Chan MPY, Yip JLY, Broadway DC, Garway-Heath DF, Luben R, Hayat S, Matthews FE, Brayne C, Khaw K‑T, Foster PJ (2016) Retinal nerve fiber layer measures and cognitive function in the EPIC-norfolk cohort study. Invest Ophthalmol Vis Sci 57(4):1921–1926. https://doi.org/10.1167/iovs.16-19067

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Koolwijk LME, Despriet DDG, Duijn CMV, Oostra BA, van Swieten JC, de Koning I, Klaver CCW, Lemij HG (2009) Association of cognitive functioning with retinal nerve fiber layer thickness. Invest Ophthalmol Vis Sci 50(10):4576. https://doi.org/10.1167/iovs.08-3181

    Article  PubMed  Google Scholar 

  8. Laude A, Lascaratos G, Henderson RD, Starr JM, Deary IJ, Dhillon B (2013) Retinal nerve fiber layer thickness and cognitive ability in older people: the Lothian birth cohort 1936 study. BMC Ophthalmol 13(1):28. https://doi.org/10.1186/1471-2415-13-28

    Article  PubMed  PubMed Central  Google Scholar 

  9. Luck T, Then FS, Schroeter ML, Witte V, Engel C, Loeffler M, Thiery J, Villringer A, Riedel-Heller SG (2017) Prevalence of DSM‑5 mild neurocognitive disorder in dementia-free older adults: results of the population-based LIFE-adult-study. Am J Geriatr Psychiatry 25(4):328–339. https://doi.org/10.1016/j.jagp.2016.07.001

    Article  PubMed  Google Scholar 

  10. Kynast J, Lampe L, Luck T, Frisch S, Arelin K, Hoffmann K‑T, Loeffler M, Riedel-Heller SG, Villringer A, Schroeter ML (2017) White matter hyperintensities associated with small vessel disease impair social cognition beside attention and memory. J Cereb Blood Flow Metab 38(6):996–1009. https://doi.org/10.1177/0271678x17719380

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kynast J, Quinque EM, Polyakova M, Luck T, Riedel-Heller SG, Baron-Cohen S, Hinz A, Witte AV, Sacher J, Villringer A, Schroeter ML (2020) Mindreading from the eyes declines with aging—evidence from 1,603 subjects. Front Aging Neurosci 12:550416. https://doi.org/10.3389/fnagi.2020.550416

    Article  PubMed  PubMed Central  Google Scholar 

  12. Girbardt J, Luck T, Kynast J, Rodriguez FS, Wicklein B, Wirkner K, Engel C, Girbardt C, Wang M, Polyakova M, Witte AV, Loeffler M, Villringer A, Riedel-Heller SG, Schroeter ML, Elze T, Rauscher FG (2021) Reading cognition from the eyes: association of retinal nerve fibre layer thickness with cognitive performance in a population-based study. Brain Commun 3(4):fcab258. https://doi.org/10.1093/braincomms/fcab258

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barrett-Young A, Ambler A, Cheyne K, Guiney H, Kokaua J, Steptoe B, Tham YC, Wilson GA, Wong TY, Poulton R (2022) Associations between retinal nerve fiber layer and ganglion cell layer in middle age and cognition from childhood to adulthood. JAMA Ophthalmol 140(3):262–268. https://doi.org/10.1001/jamaophthalmol.2021.6082

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kim HM, Han JW, Park YJ, Bae JB, Woo SJ, Kim KW (2022) Association between retinal layer thickness and cognitive decline in older adults. JAMA Ophthalmol 140(7):683–690. https://doi.org/10.1001/jamaophthalmol.2022.1563

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito Y, Sasaki M, Takahashi H, Nozaki S, Matsuguma S, Motomura K, Ui R, Shikimoto R, Kawasaki R, Yuki K, Sawada N, Mimura M, Tsubota K, Tsugane S (2020) Quantitative assessment of the retina using OCT and associations with cognitive function. Ophthalmology 127(1):107–118. https://doi.org/10.1016/j.ophtha.2019.05.021

    Article  PubMed  Google Scholar 

  16. Jeevakumar V, Sefton R, Chan J, Gopinath B, Liew G, Shah TM, Siette J (2022) Association between retinal markers and cognition in older adults: a systematic review. BMJ Open 12(6):e54657. https://doi.org/10.1136/bmjopen-2021-054657

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cuenca N, Ortuño-Lizarán I, Sánchez-Sáez X, Kutsyr O, Albertos-Arranz H, Fernández-Sánchez L, Martínez-Gil N, Noailles A, López-Garrido JA, López-Gálvez M, Lax P, Maneu V, Pinilla I (2020) Interpretation of OCT and OCTA images from a histological approach: clinical and experimental implications. Prog Retin Eye Res 77:100828. https://doi.org/10.1016/j.preteyeres.2019.100828

    Article  CAS  PubMed  Google Scholar 

  18. Yoon SP, Grewal DS, Thompson AC, Polascik BW, Dunn C, Burke JR, Fekrat S (2019) Retinal microvascular and neurodegenerative changes in alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol Retina 3(6):489–499. https://doi.org/10.1016/j.oret.2019.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang X, Zhao Q, Tao R, Lu H, Xiao Z, Zheng L, Ding D, Ding S, Ma Y, Lu Z, Xiao Y (2021) Decreased retinal vascular density in Alzheimer’s Disease (AD) and Mild Cognitive Impairment (MCI): an Optical Coherence Tomography Angiography (OCTA) study. Front Aging Neurosci 12:572484. https://doi.org/10.3389/fnagi.2020.572484

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdolahi F, Yu V, Varma R, Zhou X, Wang RK, D’Orazio LM, Zhao C, Jann K, Wang DJ, Kashani AH, Jiang X (2023) Retinal perfusion is linked to cognition and brain MRI biomarkers in black Americans. Alzheimers Dement. https://doi.org/10.1002/alz.13469

    Article  PubMed  Google Scholar 

  21. Yang K, Cui L, Chen X, Yang C, Zheng J, Zhu X, Xiao Y, Su B, Li C, Shi K, Lu F, Qu J, Li M (2022) Decreased vessel density in retinal capillary plexus and thinner ganglion cell complex associated with cognitive impairment. Front Aging Neurosci 14:872466. https://doi.org/10.3389/fnagi.2022.872466

    Article  PubMed  PubMed Central  Google Scholar 

  22. Rajula HSR, Verlato G, Manchia M, Antonucci N, Fanos V (2020) Comparison of conventional statistical methods with machine learning in medicine: diagnosis, drug development, and treatment. Medicina 56(9):455. https://doi.org/10.3390/medicina56090455

    Article  PubMed  PubMed Central  Google Scholar 

  23. Nunes A, Silva G, Duque C, Januário C, Santana I, Ambrósio AF, Castelo-Branco M, Bernardes R (2019) Retinal texture biomarkers may help to discriminate between alzheimer’s, parkinson’s, and healthy controls. PLoS ONE 14(6):e218826. https://doi.org/10.1371/journal.pone.0218826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferreira H, Serranho P, Guimarães P, Trindade R, Martins J, Moreira PI, Ambrósio AF, Castelo-Branco M, Bernardes R (2022) Stage-independent biomarkers for alzheimer’s disease from the living retina: an animal study. Sci Rep 12(1):13667. https://doi.org/10.1038/s41598-022-18113-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wynants L, van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, Bonten MMJ, Damen JA, Debray TPA, Vos MD, Dhiman P, Haller MC, ..., van Smeden M (2020) Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal. BMJ 369:m1328. https://doi.org/10.1136/bmj.m1328

    Article  PubMed  PubMed Central  Google Scholar 

  26. Roberts M, Driggs D, Thorpe M, Gilbey J, Yeung M, Ursprung S, Aviles-Rivero AI, Etmann C, McCague C, Beer L, Weir-McCall JR, Teng Z, Gkrania-Klotsas E, AIX-COVNET RA, Korhonen A, Jefferson E, Ako E, Langs G, Schönlieb C‑B (2021) Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nat Mach Intell 3(3):199–217. https://doi.org/10.1038/s42256-021-00307-0

    Article  Google Scholar 

  27. Varoquaux G, Cheplygina V (2022) Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med 5(1):48. https://doi.org/10.1038/s41746-022-00592-y

    Article  PubMed  PubMed Central  Google Scholar 

  28. American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders https://doi.org/10.1176/appi.books.9780890425596.icd9num_list

    Book  Google Scholar 

  29. Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3):183–194. https://doi.org/10.1111/j.1365-2796.2004.01388.x

    Article  CAS  PubMed  Google Scholar 

  30. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund L‑O, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, Leon MD, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Petersen RC (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International working group on mild cognitive impairment. J Intern Med 256(3):240–246. https://doi.org/10.1111/j.1365-2796.2004.01380.x

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Elze T, Li D, Baniasadi N, Wirkner K, Kirsten T, Thiery J, Loeffler M, Engel C, Rauscher FG (2017) Age, ocular magnification, and circumpapillary retinal nerve fiber layer thickness. J Biomed Opt 22(12):121718–121718. https://doi.org/10.1117/1.jbo.22.12.121718

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hood DC, Wang DL, Raza AS, de Moraes CG, Liebmann JM, Ritch R (2013) The locations of circumpapillary glaucomatous defects seen on frequency-domain OCT scans. Invest Ophthalmol Vis Sci 54(12):7338. https://doi.org/10.1167/iovs.13-12680

    Article  PubMed  PubMed Central  Google Scholar 

  33. Peschel T, Wang M, Kirsten T, Rauscher FG, Elze T A Cloud-based Infrastructure for Interactive Analysis of RNFLT Data. In: Heuveline, Vincent, Bisheh, Nina (Hrsg) E‑Science-Tage 2021: Share Your Research Data, Bd. 2022. heiBOOKS, Heidelberg, S 54–68 https://doi.org/10.11588/heibooks.979.c13718

  34. Li D, Rauscher FG, Choi EY, Wang M, Baniasadi N, Wirkner K, Kirsten T, Thiery J, Engel C, Loeffler M, Elze T (2020) Sex-specific differences in circumpapillary retinal nerve fiber layer thickness. Ophthalmology 127(3):357–368. https://doi.org/10.1016/j.ophtha.2019.09.019

    Article  PubMed  Google Scholar 

  35. Baniasadi N, Rauscher FG, Li D, Wang M, Choi EY, Wang H, Peschel T, Wirkner K, Kirsten T, Thiery J, Engel C, Loeffler M, Elze T (2020) Norms of interocular circumpapillary retinal nerve fiber layer thickness differences at 768 retinal locations. Trans Vis Sci Tech 9(9):23. https://doi.org/10.1167/tvst.9.9.23

    Article  Google Scholar 

  36. Schuster AK‑G, Fischer JE, Vossmerbaeumer C, Vossmerbaeumer U (2016) Determinants of peripapillary retinal nerve fiber layer thickness regarding ocular and systemic parameters—the MIPH Eye&Health Study. Graefes Arch Clin Exp Ophthalmol 254(10):2011–2016. https://doi.org/10.1007/s00417-016-3422-y

    Article  PubMed  Google Scholar 

  37. Lee J, Kim NR, Kim H, Han J, Lee ES, Seong GJ, Kim CY (2011) Negative refraction power causes underestimation of peripapillary retinal nerve fibre layer thickness in spectral-domain optical coherence tomography. Br J Ophthalmol 95(9):1284. https://doi.org/10.1136/bjo.2010.186536

    Article  CAS  PubMed  Google Scholar 

  38. Garway-Heath DF, Rudnicka AR, Lowe T, Foster PJ, Fitzke FW, Hitchings RA (1998) Measurement of optic disc size: equivalence of methods to correct for ocular magnification. Br J Ophthalmol 82(6):643. https://doi.org/10.1136/bjo.82.6.643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bayer A, Akman A (2020) Artifacts and anatomic variations in optical coherence tomography. Turk J Ophthalmol 50(2):99–106. https://doi.org/10.4274/tjo.galenos.2019.78000

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chong GT, Lee RK (2012) Glaucoma versus red disease. Curr Opin Ophthalmol 23(2):79–88. https://doi.org/10.1097/icu.0b013e32834ff431

    Article  PubMed  Google Scholar 

  41. Mardin C (2020) OCT-Diagnostik beim Glaukom: tipps & tricks. Klin Monatsbl Augenheilkd 237(04):539–551. https://doi.org/10.1055/a-1098-3466

    Article  PubMed  Google Scholar 

  42. Loeffler M, Engel C, Ahnert P, Alfermann D, Arelin K, Baber R, Beutner F, Binder H, Brähler E, Burkhardt R, Ceglarek U, Enzenbach C, Fuchs M, Glaesmer H, Girlich F, Hagendorff A, Häntzsch M, Hegerl U, Henger S, Thiery J (2015) The LIFE-Adult-Study: objectives and design of a population-based cohort study with 10,000 deeply phenotyped adults in Germany. BMC Public Health 15(1):691. https://doi.org/10.1186/s12889-015-1983-z

    Article  PubMed  PubMed Central  Google Scholar 

  43. Engel C, Wirkner K, Zeynalova S, Baber R, Binder H, Ceglarek U, Enzenbach C, Fuchs M, Hagendorff A, Henger S, Hinz A, Rauscher FG, Reusche M, Riedel-Heller SG, Röhr S, Sacher J, Sander C, Schroeter ML, Tarnok A, Zuelke AE (2022) Cohort profile: the LIFE-adult-study. Int J Epidemiol 52(1):e66–e79. https://doi.org/10.1093/ije/dyac114

    Article  PubMed Central  Google Scholar 

  44. Kirsten T, Meineke FA, Loeffler-Wirth H, Beger C, Uciteli A, Stäubert S, Löbe M, Hänsel R, Rauscher FG, Schuster J, Peschel T, Herre H, Wagner J, Zachariae S, Engel C, Scholz M, Rahm E, Binder H, Loeffler M, team L (2022) The leipzig health atlas—an open platform to present, archive, and share biomedical data, analyses, and models online. Methods Inf Med 61(Suppl 2):e103–e115. https://doi.org/10.1055/a-1914-1985

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rauscher FG, Wang M, Francke M, Wirkner K, Tönjes A, Engel C, Thiery J, Stenvinkel P, Stumvoll M, Loeffler M, Elze T, Ebert T (2021) Renal function and lipid metabolism are major predictors of circumpapillary retinal nerve fiber layer thickness-the LIFE-Adult Study. BMC Med 19(1):202. https://doi.org/10.1186/s12916-021-02064-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska G. Rauscher.

Ethics declarations

Conflict of interest

F.G. Rauscher and R. Bernardes declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were in accordance with the ethical standards indicated therein.

The supplement containing this article is not sponsored by industry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The German version of this article can be found under https://doi.org/10.1007/s00347-024-01985-y.

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rauscher, F.G., Bernardes, R. Retinal OCT biomarkers and their association with cognitive function—clinical and AI approaches. Ophthalmologie (2024). https://doi.org/10.1007/s00347-024-01988-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00347-024-01988-9

Keywords

Schlüsselwörter

Navigation