Skip to main content
Log in

Effect of ablation time for loading amounts of magnetic nanoparticles on CNTs for removal of Pb (II) ions from aqueous solution

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A straightforward pulsed laser ablation method at room temperature was successful in fabricating Fe3O4/carbon nanotubes (Fe3O4/CNTs). Another thing that was controlled was the laser ablation time when different amounts of magnetic nanoparticles were added to decorate CNTs. The magnetic nanocomposite materials were investigated for their adsorption capacity for lead (Pb2+). The prepared samples were studied via different techniques to show the change in the morphology, structure, magnetic, and adsorption properties in detail, such as FT-IR, XRD, SEM, Raman, TGA, XPS, BET, and VSM. These methods demonstrated that increasing the ablation time could raise the amount of Fe3O4 nanoparticles in the nanocomposites up to a point. After that, the hardness of the tubular structure changed the amount. All of the nanocomposites had good superparamagnetic properties, and the saturation magnetization changed depending on how many Fe3O4 nanoparticles were added. Nanocomposites are very good at adsorbing things and recycling them, which is because they are strongly magnetic and have a lot of Fe3O4/CNTs spread out. A study was done to find the best conditions for adsorption, so that the most Pb2+ ions could be removed. By adjusting various physicochemical variables, such as pH, reaction time, and adsorbent dosage, this was possible. The goal is reached by thoroughly getting rid of as many Pb2+ ions as possible. The pseudo-second-order kinetic model accurately described the adsorption kinetics for getting rid of Pb2+. We can, therefore, conclude that the Fe3O4/CNTs nanocomposites can be used again and again after being destroyed for 30 min. This makes them a cheap way to remove Pb2+ from water-based solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Theerthagiri, S.J. Lee, K. Karuppasamy, S. Arulmani, S. Veeralakshmi, M. Ashokkumar, M.Y. Choi, Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. J. Hazard. Mater. 412, 125245 (2021)

    CAS  Google Scholar 

  2. A. Arizavi, N.S. Mirbagheri, Z. Hosseini, P. Chen, S. Sabbaghi, Efficient removal of naphthalene from aqueous solutions using a nanoporous kaolin/Fe3O4 composite. Int. J. Environ. Sci. Technol. 17, 1991–2002 (2020)

    CAS  Google Scholar 

  3. Y.Y. Ahn, S.Y. Yang, C. Choi, W. Choi, S. Kim, H. Park, Electrocatalytic activities of Sb-SnO2 and Bi-TiO2 anodes for water treatment: effects of electrocatalyst composition and electrolyte. Catal. Today 282, 57–64 (2017)

    CAS  Google Scholar 

  4. M.S. Abdel-wahab, A. Jilani, I.S. Yahia, A.A. Al-Ghamdi, Enhanced the photocatalytic activity of Ni-doped ZnO thin films: Morphological, optical and XPS analysis. Superlattices Microstruct. 94, 108–118 (2016)

    ADS  CAS  Google Scholar 

  5. P.K. Dutta, K. Rabaey, Z. Yuan, R.A. Rozendal, J. Keller, Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent. Water Res. 44, 2563–2571 (2010)

    PubMed  CAS  Google Scholar 

  6. T.A. Kurniawan, G.Y. Chan, W.-H. Lo, S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118, 83–98 (2006)

    CAS  Google Scholar 

  7. A. Polcaro, S. Palmas, F. Renoldi, M. Mascia, On the performance of Ti/SnO2 and Ti/PbO2 anodesin electrochemical degradation of 2-chlorophenolfor wastewater treatment. J. Appl. Electrochem. 29, 147–151 (1999)

    CAS  Google Scholar 

  8. Y. Jumina, H.R.S. Priastomo, Y.S. Mutmainah, K.O. Kurniawan, Simultaneous removal of lead(II), chromium(III), and copper(II) heavy metal ions through an adsorption process using C-phenylcalix[4]pyrogallolarene material. J. Environ. Chem. Eng. 8, 103971 (2020)

    CAS  Google Scholar 

  9. R.M. Shalaby, M. Kamal, E.A.M. Ali, M.S. Gumaan, Design and properties of new lead-free solder joints using Sn-3.5Ag-Cu solder. SILICON 10, 1861–1871 (2018)

    CAS  Google Scholar 

  10. M. Arbabi, S. Hemati, M. Amiri, Removal of lead ions from industrial wastewater: a review of removal methods. Int. J. Epidemiol. Res. 2, 105–109 (2015)

    Google Scholar 

  11. M. Patel, A.R. Skinner, Thermal ageing studies on room-temperature vulcanised polysiloxane rubbers. Polym. Degrad. Stab. 73, 399–402 (2001)

    CAS  Google Scholar 

  12. P.C. Ma, B.Z. Tang, J.-K. Kim, Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46, 1497–1505 (2008)

    CAS  Google Scholar 

  13. Y. Cheng, J. Huang, H. Qi, L. Cao, J. Yang, Q. Xi, X. Luo, K. Yanagisawa, J. Li, Adjusting the chemical bonding of SnO2@ CNT composite for enhanced conversion reaction kinetics. Small 13, 1700656 (2017)

    Google Scholar 

  14. M.H. Majles Ara, H. Akheratdoost, E. Koushki, Self-diffraction and high nonlinear optical properties of carbon nanotubes under CW and pulsed laser illumination. J. Mol. Liq. 206, 4–9 (2015)

    CAS  Google Scholar 

  15. F. Ahmadpoor, S.M. Zebarjad, K. Janghorban, Decoration of multi-walled carbon nanotubes with silver nanoparticles and investigation on its colloid stability. Mater. Chem. Phys. 139, 113–117 (2013)

    CAS  Google Scholar 

  16. B. Yu, Y. Chen, Conductive WO3-x@ CNT networks for efficient Li-S batteries. IOP Conf. Ser. Mater. Sci. Eng. 892, 012027 (2020)

    CAS  Google Scholar 

  17. S. Velmurugan, S. Palanisamy, T.C.-K. Yang, M. Gochoo, S.-W. Chen, Ultrasonic assisted functionalization of MWCNT and synergistic electrocatalytic effect of nano-hydroxyapatite incorporated MWCNT-chitosan scaffolds for sensing of nitrofurantoin. Ultrason. Sonochem. 62, 104863 (2020)

    PubMed  CAS  Google Scholar 

  18. E.A. Mwafy, A.M. Mostafa, Efficient removal of Cu (II) by SnO2/MWCNTs nanocomposite by pulsed laser ablation method. Nano-Struct. Nano-Objects 24, 100591 (2020)

    CAS  Google Scholar 

  19. A.A. Isari, M. Mehregan, S. Mehregan, F. Hayati, R. Rezaei Kalantary, B. Kakavandi, Sono-photocatalytic degradation of tetracycline and pharmaceutical wastewater using WO3/CNT heterojunction nanocomposite under US and visible light irradiations: a novel hybrid system. J. Hazard. Mater. 390, 122050 (2020)

    PubMed  CAS  Google Scholar 

  20. M.G. Hosseini, P.Y. Sefidi, A.M. Mert, S. Kinayyigit, Investigation of solar-induced photoelectrochemical water splitting and photocatalytic dye removal activities of camphor sulfonic acid doped polyaniline -WO3- MWCNT ternary nanocomposite. J. Mater. Sci. Technol. 38, 7–18 (2020)

    CAS  Google Scholar 

  21. R.A. Ismail, G.M. Sulaiman, S.A. Abdulrahman, T.R. Marzoog, Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C 53, 286–297 (2015)

    CAS  Google Scholar 

  22. B. Jaleh, M. Nasrollahzadeh, B.F. Mohazzab, M. Eslamipanah, M. Sajjadi, H. Ghafuri, State-of-the-art technology: Recent investigations on laser-mediated synthesis of nanocomposites for environmental remediation. Ceram. Int. 47, 10389–10425 (2021)

    CAS  Google Scholar 

  23. W.H. Arnawtee, B. Jaleh, M. Nasrollahzadeh, R. Bakhshali-Dehkordi, A. Nasri, Y. Orooji, Lignin valorization: Facile synthesis, characterization and catalytic activity of multiwalled carbon nanotubes/kraft lignin/Pd nanocomposite for environmental remediation. Sep. Purif. Technol. 290, 120793 (2022)

    CAS  Google Scholar 

  24. M. Nasrollahzadeh, N. Shafiei, M. Eslamipanah, P. Fakhri, B. Jaleh, Y. Orooji, R.S. Varma, Preparation of Au nanoparticles by Q switched laser ablation and their application in 4-nitrophenol reduction. Clean Technol. Environ. Policy 22, 1715–1724 (2020)

    CAS  Google Scholar 

  25. A. Kanitz, M. Kalus, E. Gurevich, A. Ostendorf, S. Barcikowski, D. Amans, Review on experimental and theoretical investigations of the early stage, femtoseconds to microseconds processes during laser ablation in liquid-phase for the synthesis of colloidal nanoparticles. Plasma Sources Sci. Technol. 28(10), 103001 (2019)

    ADS  CAS  Google Scholar 

  26. M. Dell’Aglio, V. Motto-Ros, F. Pelascini, I.B. Gornushkin, A. De Giacomo, Investigation on the material in the plasma phase by high temporally and spectrally resolved emission imaging during pulsed laser ablation in liquid (PLAL) for NPs production and consequent considerations on NPs formation. Plasma Sources Sci. Technol. 28, 085017 (2019)

    ADS  Google Scholar 

  27. P.K. Baruah, A.K. Sharma, A.J.R.A. Khare, Role of confining liquids on the properties of Cu@ Cu 2 O nanoparticles synthesized by pulsed laser ablation and a correlative ablation study of the target surface. RSC Adv. 9, 15124–15139 (2019)

    ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. M. Nabil, S.S. Fouad, K. Easawi, S. Abdallah, F. Horia, Novel correlations between optical absorption and water desalination of Ag/Fe3O4 nanocomposite prepared by pulsed laser ablation in liquid. Opt. Laser Technol. 164, 109545 (2023)

    CAS  Google Scholar 

  29. M.R. Khan, S.U. Haq, Q. Abbas, A. Nadeem, Improvement in signal sensitivity and repeatability using copper nanoparticle-enhanced laser-induced breakdown spectroscopy. Spectrochim. Acta, Part B 195, 106507 (2022)

    CAS  Google Scholar 

  30. T.A. Alrebdi, R.A. Rezk, S.M. Alghamdi, H.A. Ahmed, F.H. Alkallas, R.A. Pashameah, A.M. Mostafa, E.A.J.M. Mwafy, Photocatalytic performance improvement by doping Ag on ZnO/MWCNTs nanocomposite prepared with pulsed laser ablation method based photocatalysts degrading rhodamine B organic pollutant dye. Membrane 12, 877 (2022)

    CAS  Google Scholar 

  31. F.H. Alkallas, E.A. Mwafy, A.B.G. Trabelsi, R.A. Pashameah, W.B. Elsharkawy, A.N. Al-Ahmadi, A.M. Mostafa, R.A. Rezk, Effect of laser repetition rate parameter in pulsed Laser ablation for synthesis Li4Ti5O12 polyether sulfone nanocomposite for optoelectronic applications. Surf. Interfaces 41, 103245 (2023)

    CAS  Google Scholar 

  32. F.H. Alkallas, S.M. Alghamdi, A.N. Al-Ahmadi, A.B. Trabelsi, E.A. Mwafy, W.B. Elsharkawy, E. Alsubhe, A.M. Mostafa, R.A. Rezk, Photodetection properties of CdS/Si heterojunction prepared by pulsed laser ablation in DMSO solution for optoelectronic application. Micromachines 14(8), 1546 (2023)

    PubMed  PubMed Central  Google Scholar 

  33. S.H. Alrefaee, F.H. Alkallas, A. Gouider Trabelsi, R.A. Pashameah, W.B. Elsharkawy, A.N. Al-Ahmadi, A.R.Z. Almotairy, S.S. Nafee, M. Alshammari, A.M. Mostafa, Laser assisted method for synthesis Li4Ti5O12/polyether sulfone composite for lithium ion batteries anodic materials. J. Mater. Res. Technol. 25, 440–450 (2023)

    CAS  Google Scholar 

  34. G.M. Al-Senani, S.H. Alrefaee, A.N. Al-Ahmadi, M.M. ElFaham, A.R.Z. Almotairy, W.B. Elsharkawy, A.M. Mostafa, Effect of laser pulse repetition rate in the synthesis of nickel oxide nanoparticles in PVA solution on the adsorption efficiency against phosphate ions. Radiat. Phys. Chem. 208, 110872 (2023)

    CAS  Google Scholar 

  35. M.A. Al-Kinani, A.J. Haider, S. Al-Musawi, Design and synthesis of nanoencapsulation with a new formulation of Fe@Au-CS-CU-FA NPs by pulsed laser ablation in liquid (PLAL) method in breast cancer therapy: in vitro and in vivo. Plasmonics 16, 1107–1117 (2021)

    CAS  Google Scholar 

  36. H.H. Bahjat, R.A. Ismail, G.M. Sulaiman, Photodetection properties of populated Fe3O4@TiO2 core–shell/Si heterojunction prepared by laser ablation in water. Appl. Phys. A 128, 8 (2021)

    ADS  Google Scholar 

  37. A. Burhan, K.S. Khashan, G.M. Sulaiman, Hybrid Fe3O4-Au nanoparticles prepared by two-step pulsed laser ablation in liquid for biomedical applications. Plasmonics, DO I, 1–11 (2023)

    Google Scholar 

  38. F.S. Abdulwahid, A.J. Haider, S. Al-Musawi, Effect of laser parameter on Fe3O4 NPs formation by pulsed laser ablation in liquid. In: AIP Conference Proceedings, AIP Publishing (2023_

  39. F.H. Alkallas, S.M. Alghamdi, E.A. Rashed, A.B.G. Trabelsi, S.S. Nafee, W.B. Elsharkawy, E. Alsubhe, S.H. Alshreef, A.M. Mostafa, Nanocomposite Fe3O4-MWCNTs based on femtosecond pulsed laser ablation for catalytic degradation. Diam. Relat. Mater. 140, 110445 (2023)

    ADS  CAS  Google Scholar 

  40. A.H.F. Alnasraui, I.H. Joe, S. Al-Musawi, Design and synthesize of folate decorated Fe3O4@Au-DEX-CP nano formulation for targeted drug delivery in colorectal cancer therapy: In vitro and in vivo studies. J. Drug Deliv. Sci. Technol. 87, 104798 (2023)

    CAS  Google Scholar 

  41. J.D. Lopez-Vargas, A. Dante, R.C. Allil, I. Del Villar, I.R. Matias, M.M. Werneck, Ag@Fe3O4-coated U-shaped plastic optical fiber sensor for H2S detection. Sens. Actuators, B Chem. 401, 135054 (2024)

    CAS  Google Scholar 

  42. Q. Gao, J. Xu, X.-H. Bu, Recent advances about metal–organic frameworks in the removal of pollutants from wastewater. Coord. Chem. Rev. 378, 17–31 (2019)

    CAS  Google Scholar 

  43. M. Alheshibri, K.A. Elsayed, F.A. Khan, S.A. Haladu, F. Ercan, E. Çevik, Q.A. Drmosh, T.S. Kayed, M.A. Almessiere, Tuning the morphology of Au/ZnO nanocomposite using pulsed laser ablation for anticancer applications. Arab. J. Sci. Eng. (2023). https://doi.org/10.1007/s13369-023-08061-8

    Article  Google Scholar 

  44. A.A. Manda, S.A. Haladu, K.A. Elsayed, U. Ibrahim Gaya, M. Alheshibri, A. Al Baroot, E. Çevik, İ Ercan, F. Ercan, T.S. Kayed, S. Musa Magami, N.A. Altamimi, Fast one-pot laser-based fabrication of ZnO/TiO2-reduced graphene oxide nanocomposite for photocatalytic applications. Opt. Laser Technol. 160, 109105 (2023)

    CAS  Google Scholar 

  45. A. Al Baroot, K.A. Elsayed, S.A. Haladu, S.M. Magami, M. Alheshibri, F. Ercan, E. Çevik, S. Akhtar, A.A. Manda, T.S. Kayed, N.A. Altamimi, A.A. Alsanea, A.L. Al-Otaibi, One-pot synthesis of SnO2 nanoparticles decorated multi-walled carbon nanotubes using pulsed laser ablation for photocatalytic applications. Opt. Laser Technol. 157, 108734 (2023)

    CAS  Google Scholar 

  46. A. Al Baroot, Q.A. Drmosh, I.O. Alade, K.A. Elsayed, M. Alheshibri, E. Kotb, H.R. AlQahtani, H.S. Al Qahtani, Investigating the antibacterial activity of nanostructured tungsten oxide prepared by pulsed laser ablation at different hydrogen peroxide concentrations. Opt. Mater. 133, 112886 (2022)

    CAS  Google Scholar 

  47. K.A. Elsayed, M. Alomari, Q.A. Drmosh, M. Alheshibri, A. Al Baroot, T.S. Kayed, A.A. Manda, A.L. Al-Alotaibi, Fabrication of ZnO-Ag bimetallic nanoparticles by laser ablation for anticancer activity. Alex. Eng. J. 61, 1449–1457 (2022)

    Google Scholar 

  48. A.A. Manda, K.A. Elsayed, S.A. Haladu, E. Cevik, M.B. Ibrahim, Q.A. Drmosh, Catalytic activity of cellulose acetate butyrate/TiO2-Au nanocomposite film prepared by laser ablation for 2-nitrophenol reduction. J. Polym. Environ. (2023). https://doi.org/10.1007/s10924-023-02992-x

    Article  Google Scholar 

  49. D. Tishkevich, I. Korolkov, A. Kozlovskiy, M. Anisovich, D. Vinnik, A. Ermekova, A. Vorobjova, E. Shumskaya, T. Zubar, S. Trukhanov, Immobilization of boron-rich compound on Fe3O4 nanoparticles: stability and cytotoxicity. J. Alloy. Compd. 797, 573–581 (2019)

    CAS  Google Scholar 

  50. K. Dukenbayev, I.V. Korolkov, D.I. Tishkevich, A.L. Kozlovskiy, S.V. Trukhanov, Y.G. Gorin, E.E. Shumskaya, E.Y. Kaniukov, D.A. Vinnik, M.V. Zdorovets, Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 9, 494 (2019)

    PubMed  PubMed Central  CAS  Google Scholar 

  51. P. Rezai, S. Baniyaghoob, M.H. Sadr, Fe 3 O 4@ SiO 2@ AgO Nanocomposite: Synthesis, Characterization, and Investigation of its Photocatalytic Application. J. Electron. Mater. 48, 3285–3296 (2019)

    ADS  CAS  Google Scholar 

  52. X.-L. Zhang, X. Zhao, Z.-B. Liu, S. Shi, W.-Y. Zhou, J.-G. Tian, Y.-F. Xu, Y.-S. Chen, Nonlinear optical and optical limiting properties of graphene oxide–Fe3O4 hybrid material. J. Opt. 13, 075202 (2011)

    ADS  Google Scholar 

  53. I.S. Zhidkov, E.Z. Kurmaev, S.O. Cholakh, E. Fazio, L. D’urso, XPS study of interactions between linear carbon chains and colloidal Au nanoparticles. Mendeleev Commun. 30, 285–287 (2020)

    CAS  Google Scholar 

  54. J. Zhao, J. Zhang, L. Wang, J. Li, T. Feng, J. Fan, L. Chen, J. Gu, Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 22, 100486 (2020)

    Google Scholar 

  55. N. Mukwevho, R. Gusain, E. Fosso-Kankeu, N. Kumar, F. Waanders, S.S. Ray, Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. J. Ind. Eng. Chem. 81, 393–404 (2020)

    CAS  Google Scholar 

  56. A. Kato, H. Kowada, M. Deguchi, C. Hotehama, A. Hayashi, M. Tatsumisago, XPS and SEM analysis between Li/Li3PS4 interface with Au thin film for all-solid-state lithium batteries. Solid State Ionics 322, 1–4 (2018)

    CAS  Google Scholar 

  57. G.L.A.A.V. Moholkar, K.-U. Sim, Y.-b Kwon, D.S. Choi, K.Y. Rajpure, J.H. Kim, Temperature dependent structural, luminescent and XPS studies of CdO: Ga thin films deposited by spray pyrolysis. J. Alloys Compd. 506, 794–799 (2010)

    CAS  Google Scholar 

  58. P.T. Ahmad, B. Jaleh, M. Nasrollahzadeh, Z. Issaabadi, Efficient reduction of waste water pollution using GO/γMnO2/Pd nanocomposite as a highly stable and recoverable catalyst. Sep. Purif. Technol. 225, 33–40 (2019)

    CAS  Google Scholar 

  59. E.A. Mwafy, M.S. Gaafar, A.M. Mostafa, S.Y. Marzouk, I.S. Mahmoud, Novel laser-assisted method for synthesis of SnO2/MWCNTs nanocomposite for water treatment from Cu (II). Diam. Relat. Mater. 113, 108287 (2021)

    ADS  CAS  Google Scholar 

  60. F.S. Alamro, A.M. Mostafa, K.A. Abu Al-Ola, H.A. Ahmed, A.J.N. Toghan, Synthesis of Ag nanoparticles-decorated CNTs via laser ablation method for the enhancement the photocatalytic removal of naphthalene from water. Nanomaterials 11, 2142 (2021)

    PubMed  PubMed Central  CAS  Google Scholar 

  61. M. Ahmad, E. Ahmed, Z.L. Hong, X.L. Jiao, T. Abbas, N.R. Khalid, Enhancement in visible light-responsive photocatalytic activity by embedding Cu-doped ZnO nanoparticles on multi-walled carbon nanotubes. Appl. Surf. Sci. 285, 702–712 (2013)

    ADS  CAS  Google Scholar 

  62. V. Janaki, B.-T. Oh, K. Shanthi, K.-J. Lee, A. Ramasamy, S. Kamala-Kannan, Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth. Met. 162, 974–980 (2012)

    CAS  Google Scholar 

  63. Y. Shi, Y. Xing, S. Deng, B. Zhao, Y. Fu, Z. Liu, Synthesis of proanthocyanidins-functionalized Fe3O4 magnetic nanoparticles with high solubility for removal of heavy-metal ions. Chem. Phys. Lett. 753, 137600 (2020)

    CAS  Google Scholar 

  64. A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56, 91–106 (2004)

    ADS  PubMed  Google Scholar 

  65. M.B. Tahir, H. Kiran, T. Iqbal, The detoxification of heavy metals from aqueous environment using nano-photocatalysis approach: a review. Environ. Sci. Pollut. Res. 26, 10515–10528 (2019)

    CAS  Google Scholar 

  66. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review. J. Environ. Chem. Eng. 5, 2782–2799 (2017)

    CAS  Google Scholar 

  67. D.P. Facchi, A.L. Cazetta, E.A. Canesin, V.C. Almeida, E.G. Bonafé, M.J. Kipper, A.F. Martins, New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(II) ions from aqueous systems. Chem. Eng. J. 337, 595–608 (2018)

    CAS  Google Scholar 

  68. H. Yang, M. Lu, D. Chen, R. Chen, L. Li, W. Han, Efficient and rapid removal of Pb2+ from water by magnetic Fe3O4@MnO2 core-shell nanoflower attached to carbon microtube: adsorption behavior and process study. J. Colloid Interface Sci. 563, 218–228 (2020)

    ADS  PubMed  CAS  Google Scholar 

  69. Y. Liu, R. Fu, Y. Sun, X. Zhou, S.A. Baig, X. Xu, Multifunctional nanocomposites Fe3O4@SiO2-EDTA for Pb(II) and Cu(II) removal from aqueous solutions. Appl. Surf. Sci. 369, 267–276 (2016)

    ADS  CAS  Google Scholar 

  70. L. Ji, L. Zhou, X. Bai, Y. Shao, G. Zhao, Y. Qu, C. Wang, Y. Li, Facile synthesis of multiwall carbon nanotubes/iron oxides for removal of tetrabromobisphenol A and Pb (II). J. Mater. Chem. 22, 15853–15862 (2012)

    CAS  Google Scholar 

  71. Y. Tao, C. Zhang, T. Lü, H. Zhao, Removal of Pb(II) ions from wastewater by using polyethyleneimine-functionalized Fe3O4 magnetic nanoparticles. Appl. Sci. 10, 948 (2020)

    CAS  Google Scholar 

  72. S. Venkateswarlu, B.N. Kumar, B. Prathima, Y. SubbaRao, N.V.V. Jyothi, A novel green synthesis of Fe3O4 magnetic nanorods using Punica granatum rind extract and its application for removal of Pb(II) from aqueous environment. Arab. J. Chem. 12, 588–596 (2019)

    CAS  Google Scholar 

  73. S. Li, Y. Gong, Y. Yang, C. He, L. Hu, L. Zhu, L. Sun, D. Shu, Recyclable CNTs/Fe3O4 magnetic nanocomposites as adsorbents to remove bisphenol A from water and their regeneration. Chem. Eng. J. 260, 231–239 (2015)

    CAS  Google Scholar 

  74. Y. Tan, M. Chen, Y. Hao, High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chem. Eng. J. 191, 104–111 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R38), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. In addition, Wafaa B. Elsharkawy thanks the Scientific Research Deanship (SRD) in the Prince Sattam bin Abdulaziz University, kingdom of Saudi Arabia (KSA).

Funding

This research was funded by the Princess Nourah bint Abdulrahman University Re-searchers Supporting Project number (PNURSP2024R38), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis.

Corresponding author

Correspondence to Ayman M. Mostafa.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkallas, F.H., Alghamdi, S.M., Albeydani, O. et al. Effect of ablation time for loading amounts of magnetic nanoparticles on CNTs for removal of Pb (II) ions from aqueous solution. Appl. Phys. A 130, 128 (2024). https://doi.org/10.1007/s00339-024-07274-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07274-4

Keywords

Navigation