Skip to main content

Advertisement

Log in

High-performance supercapacitor poplar catkin Ag/carbon fibers composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An efficient method is described to fabricate carbonized wood fibers (CWF)-based electrode materials decorated with Ag particles (CWF-Ag) through electroless plating, and further carbonization from natural biomass poplar catkin and poplar fiber. Intrinsic physical advantages of poplar catkin fibers provide a chance of evenly dispersed Ag layer in addition to successful modulation of porosity and conductivity. However, the separation process resulted in cross-linked structures defect of poplar fibers, which impeded Ag particles to uniformly disperse. CWF-Ag from poplar catkin (CWF-Ag-poplar catkin) displays well-defined electrochemical performance for supercapacitors on account of its large specific surface area (745 m2/g), and hierarchical porous structure. Remarkably, CWF-Ag-poplar catkin achieves a high specific capacitance of 250 F/g at a current density of 1 A/g in 1 M KOH electrolyte that is about 1.3 times higher than CWF-Ag-poplar fiber (190 F/g). The result is due to uniform loading of silver on fibers. CWF-Ag-poplar catkin shows good rate capability and outstanding cycling stability up to 5000 times (only 5% loss of capacitance). The present study provides a simple and efficient approach (electroless plating) to design a high capacitance and stable supercapacitor electrode from natural biomass without treatment.

Graphic abstract

The present study provides a simple and efficient approach (electroless plating) to design a high capacitance and stable supercapacitor electrode from natural biomass, poplar catkin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q.J. Lu, S.Q. Zhou, B. Li, H.T. Wei, D.M. Zhang, J. Hu, L.Z. Zhang, J. Zhang, Q.J. Liu, Mesopore-rich carbon flakes derived from lotus leaves and it’s ultrahigh performance for supercapacitors. Electrochim. Acta 333, 135481 (2020)

    Article  Google Scholar 

  2. Y.B. Li, D. Zhang, Y.M. Zhang, J.J. He, Y. Wang, Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors. J. Power Sources 122, 27396 (2019)

    Google Scholar 

  3. Y.J. Zhang, H.L. Chen, S.J. Wang, X. Zhao, F.G. Kong, Regulatory pore structure of biomass-based carbon for supercapacitor applications. Microporous Mesoporous Mater. 297, 110032 (2020)

    Article  Google Scholar 

  4. X. Zhao, H.L. Chen, F.G. Kong, Y.J. Zhang, S.J. Wang, A. Lucia Lucian, F. Pedram, H. Pan, Fabrication, characteristics and applications of carbon materials with different morphologies and porous structures produced from wood liquefaction: a review. Chem. Eng. J. 364, 226–243 (2019)

    Article  Google Scholar 

  5. W.M. Du, Z.R. Zhang, L. Du, X.Y. Fan, S.H. Wei, Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors. J. Alloy. Compd. 797, 1031–1040 (2019)

    Article  Google Scholar 

  6. Y. Liu, X.M. Xu, Z.P. Shao, S.P. Jiang, Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 26, 1–22 (2020)

    Article  Google Scholar 

  7. X. Zhao, H. Chen, S. Wang, Q. Wu, N. Xia, F. Kong, Electroless decoration of cellulose paper with nickel nanoparticles: a hybrid carbon fiber for supercapacitors. Electrochim. Acta 215, 157–162 (2018)

    Google Scholar 

  8. L. Erlantz, J. Marta, A. Christian, N. Markus, C. Walter, Electroless plating of platinum nanoparticles onto mesoporous cellulose films for catalytically active free-standing materials. Cellulose 26, 5513–5527 (2019)

    Article  Google Scholar 

  9. M. Arroyave, V. Springer, M.E. Centurión, Novel synthesis without separation and purification processes of carbon dots and silver/carbon hybrid nanoparticles. J. Inorg. Organometall. Polym. Organometall. Polym. Mater. (2019). https://doi.org/10.1007/s10904-019-01266-1

    Article  Google Scholar 

  10. C. Gao, Q. Zhang, Z. Lu, Y. Yin, Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 133, 19706–19709 (2018)

    Article  Google Scholar 

  11. G. V. Purushottam, L. Karen, Y. Nandadeva, F. Ford, M. Srinivasa, Antimicrobial-antibiofilm compositions and methods of use thereof for personal care products. US20170128338A1 (2017).

  12. J. Liu, X. Xu, W. Lu, X. Xiong, X. Ouyang, C. Zhao, F. Wang, S. Qin, J.L. Hong, J.N. Tang, D.Z. Chen, A high performance all-solid-state flexible supercapacitor based on carbon nanotube fiber/carbon nanotubes/polyaniline with a double core-sheathed structure. Electrochim. Acta 283, 366–373 (2018)

    Article  Google Scholar 

  13. K. Ram, Y.A. Kumar, Corrigendum to “EPR, optical absorption and superposition model studies of Cr3+ doped dipotassium stannic chloride monohydrate. J. Phys. Chem. Lett. 612, 245–250 (2014)

    Article  Google Scholar 

  14. H. Jin, J. Hu, S. Wu, X. Wang, H. Zhang, H. Xu, K. Lian, Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. J. Power Sources 384, 270–277 (2018)

    Article  ADS  Google Scholar 

  15. W. Wang, T. Liang, H. Bai, W. Dong, X. Liu, All cellulose composites based on cellulose diacetate and nanofibrillated cellulose prepared by alkali treatment. Carbohydr. Polym. 179, 297–304 (2018)

    Article  Google Scholar 

  16. X.G. Cao, C.L. Liang, S.M. Xia, Preparation and conductivity of carbon fiber coated with silver. Mater. Sci. Forum 847, 137–142 (2016)

    Article  Google Scholar 

  17. C.X. Li, X.S. Li, X.J. Sun, X.Y. Zhang, L.F. Duan, X.J.W. YangLu, Porous carbon networks derived from graphitic carbon nitride for efficient oxygen reduction reaction. Nanoscale Res. Lett. 14, 249 (2019)

    Article  ADS  Google Scholar 

  18. Y.G. Gao, F.P. Li, P. Zhou, Z.Y. Wang, Enhanced selectivity and mass activity for electrocatalytic reduction of CO2 to CO on anodized Zn/carbon/Ag electrode. J. Mater. Chem. A 7, 16685–16689 (2019)

    Article  Google Scholar 

  19. X. Zhao, M. Falk, S.X. Liu, E. Wolfgang, Carbon nanocasting in ion-track etched polycarbonate membranes. Mater. Lett. 187, 56–59 (2017)

    Article  Google Scholar 

  20. M.D. Mehare, A.D. Deshmukh, S.J. Dhoble, Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application. J. Mater. Sci. 55, 4213–4224 (2020)

    Article  ADS  Google Scholar 

  21. Z.W. Zeng, L. Yi, J.W. He, Q. Hu, Y.C. Liao, Y.D. Wang, Hierarchically porous carbon with pentagon defects as highly efficient catalyst for oxygen reduction and oxygen evolution reactions. J. Mater. Sci. 55, 4780–4791 (2020)

    Article  ADS  Google Scholar 

  22. Y. Sun, J.J. Xue, S.Y. Dong, Y.D. Zhang, Y.F. An, B. Ding, X.G. Zhang, Biomass-derived porous carbon electrodes for high-performance supercapacitors. J. Mater. Sci. 55, 5166–5176 (2020)

    Article  ADS  Google Scholar 

  23. S. Tang, S. Vongehr, X. Meng, Controllable incorporation of Ag and Ag-Au nanoparticles in carbon spheres for tunable optical and catalytic properties. J. Mater. Chem. 20, 5436–5445 (2010)

    Article  Google Scholar 

  24. Y. Kobayashi, V. Salgueirino-Maceira, L.M. Liz-Marzan, Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem. Mater. 13, 1630–1633 (2001)

    Article  Google Scholar 

  25. K. Mugadza, P.G. Ndungu, A. Stark, V.O. Nyamori, Conversion of residue biomass into value added carbon materials: utilisation of sugarcane bagasse and ionic liquids. J. Mater. Sci. 54, 12476–12487 (2019)

    Article  ADS  Google Scholar 

  26. J.Y. Lin, J.J. Huang, Y.L. Hsueh, Y.X. Zhang, Diameter effect of silver nanowire doped in activated carbon as thin film electrode for high performance supercapacitor. Appl. Surf. Sci. 477, 257–263 (2019)

    Article  ADS  Google Scholar 

  27. Y. Guan, Z. Guo, H. Che, J. Mu, X. Zhang, Z. Zhang, G. Wang, Y. Bai, H. Xie, Core/shell nanorods of MnO2/carbon embedded with Ag nanoparticles as high-performance electrode materials for supercapacitors. Chem. Eng. J. 331, 23–30 (2018)

    Article  Google Scholar 

  28. Q. Meng, K. Qin, L. Ma, C. He, E. Liu, F. He, C. Shi, Q. Li, J. Li, N. Zhao, N-Doped porous carbon nanofibers/porous silver network hybrid for high-rate supercapacitor electrode. ACS Appl. Mater. Interfaces 9, 30832–30839 (2017)

    Article  Google Scholar 

  29. J. Zhi, W. Zhao, X. Liu, A. Chen, Z. Liu, F. Huang, Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv. Funct. Mater. 24, 2013–2019 (2014)

    Article  Google Scholar 

  30. M. Sawangphruk, M. Suksomboon, K. Kongsupornsak, J. Khuntilo, P. Srimuk, Y. Sanguansak, P. Kunbud, P. Suktha, P. Chiochan, High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J. Mater. Chem. A 1, 9630–9636 (2013)

    Article  Google Scholar 

  31. N. Cai, J. Fu, H. Zeng, X. Luo, C. Han, F. Yu, Reduced graphene oxide-silver nanoparticles/nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitor application. J. Alloy. Compd. 742, 769–779 (2018)

    Article  Google Scholar 

  32. J.J. Huang, Y.L. Hsueh, Y.X. Zhang, Silver nanowire doped active carbon thin film electrode by ultrasonic spray coating for high performance supercapacitor. Surf. Coat. Technol. 350, 788–794 (2018)

    Article  Google Scholar 

  33. G. Wee, W.F. Mak, N. Phonthammachai, A. Kiebele, M.V. Reddy, C.G. Gruner, M. Srinivasan, S.G. Mhaisalkar, Particle size effect of silver nanoparticles decorated single walled carbon nanotube electrode for supercapacitors. J. Chem. Soc. 157, 179–184 (2010)

    Google Scholar 

Download references

Acknowledgements

The present work was financially supported by the National Key R&D Program of China (2018YFB1501403), the Key Laboratory of Bio-based Material Science and Technology (Northeast Forestry University, SWZ-MS201904), Taishan Scholars Program and the Foundation for Outstanding Young Scientist in Shandong Province (BS2015SW011), the Foundation of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control of China (KF201813-4), the National Natural Science Foundation of China (Grant No. 31800499).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Ji, X., Si, H. et al. High-performance supercapacitor poplar catkin Ag/carbon fibers composites . Appl. Phys. A 126, 803 (2020). https://doi.org/10.1007/s00339-020-03984-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03984-7

Keywords

Navigation