Skip to main content
Log in

Stress relaxation in LTPS TFT backplane by architecture modulation on plastic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of structural design on inorganic backplanes was discussed to achieve highly bendable characteristics for flexible electronic applications. Based on a low-temperature polysilicon (LTPS) thin-film transistor backplane, the failure mechanics and tolerance of structures were implemented as a function of backplane geometry and stress value. Results showed that the strain resistance increased in the thin-film backplane by adopting island geometry under bending stress, which was against the fatigue formation with enhanced resilience. The electrical integrity of transistors was achieved at the bending radius of a few millimeters for an island backplane architecture, and the conventional structured inorganic backplanes underwent a significant change in electromechanical feature under the mechanical cyclic bending stress. The stress analysis on the bended surface and the stability behaviors of plastic backplanes embedded in different configurations also showed that the mesh-like islanded geometry in a bending system willingly helped to release the accumulated sheer stress in the thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X. Huang, Y. Qu, D. Fan, J. Kim, S.R. Forrest, Org. Electron. 69, 297–300 (2019)

    Article  Google Scholar 

  2. A.T. Zocco, H. You, J.A. Hagen, A.J. Steckl, Nanotechnology 25, 094005 (2014)

    Article  ADS  Google Scholar 

  3. J.H. Hong, J.M. Shin, G.M. Kim, H. Joo, G.S. Park, I.B. Hwang, M.W. Kim, W.-S. Park, H.Y. Chu, S. Kim, J. Soc. Inform. Display 25(3), 194 (2017)

    Article  Google Scholar 

  4. M.A. Rahman, H. Kim, Y.K. Lee, C. Lee, H. Nam, J.S. Lee, H. Soh, J.K. Lee, E.G. Lee, J. Lee, J. Nanosci. Nanotechnol. 12, 1348 (2012)

    Article  Google Scholar 

  5. G.G. Heredia, L.A. Gonzalez, H.N. Alshareef, B.E. Gnade, M.Q. Lopez, Semicond. Sci. Technol. 25, 115001 (2010)

    Article  ADS  Google Scholar 

  6. T. Sekitani, U. Zschieschang, H. Klauk, T. Someya, Nat. Mater. 9, 1015 (2010)

    Article  ADS  Google Scholar 

  7. M.-K. Kang, S.J. Kim, H.J. Kim, Sci. Rep. 4, 6858 (2014)

    Article  Google Scholar 

  8. M.-W. Ma, T.-Y. Chiang, T.-S. Chao, T.-F. Lei, Semicond. Sci. Technol. 24(7), 072001 (2009)

    Article  ADS  Google Scholar 

  9. E.K. Park, S. Kim, J. Heo, H.J. Kim, Appl. Surf. Sci. 370, 126–130 (2016)

    Article  ADS  Google Scholar 

  10. S.-H. Cho, B.-H. Ko, H.-S. Lee, Eng. Fract. Mech. 200, 283–293 (2018)

    Article  Google Scholar 

  11. H. Gleskova, S. Wagner, Z. Suo, Appl. Phys. Lett. 75, 3011 (1999)

    Article  ADS  Google Scholar 

  12. H. Gleskova, P.I. Hsu, Z. Xi, J.C. Sturm, Z. Suo, S. Wagner, J. Non-Cryst. Solids 338–340, 732 (2004)

    Article  ADS  Google Scholar 

  13. Y. Su, S. Li, R. Li, C. Dagdeviren, Appl. Phys. Lett. 07, 041905 (2015)

    Article  ADS  Google Scholar 

  14. W. Fan, J. Cheng, X. Zhu, Y. Du, X. Huang, Int. Conf. Display Technol. 49(S1), 212–213 (2018)

    Google Scholar 

  15. W.-H. Chen, M.-C. Hsieh, T.T.-J. Wang, T.-C. Chang, M.-J. Yang, B.-Y. Su, Y.-H. Yeh, J.-C. Ho, G. Chen, C.-C. Tsai, C.-C. Lee, SID Symp. Digest Tech. Papers 48(1), 1742 (2017)

    Article  Google Scholar 

  16. R. Chen, W. Zhou, M. Zhang, H.-S. Kwok, Thin Solid Films 564, 397 (2014)

    Article  ADS  Google Scholar 

  17. C.B. Park, H. Na, S.S. Yoo, K.-S. Park, Appl. Phys. Express 8, 111201 (2015)

    Article  ADS  Google Scholar 

  18. C.B. Park, H. Na, S.S. Yoo, K.-S. Park, Appl. Phys. Express 9, 031101 (2016)

    Article  ADS  Google Scholar 

  19. H.R. Choi, B.C. Mohanty, J.S. Kim, Y.S. Cho, A.C.S. Appl, Mater. Interfaces. 2(9), 2471 (2010)

    Article  Google Scholar 

  20. H. Gleskova, S. Wagner, J. Non-Cryst, Solids 354, 2627 (2008)

    Google Scholar 

  21. B. Tabarrok, Z. Qin, Comput. Struct. 45(5–6), 973–984 (1992)

    Article  Google Scholar 

  22. C.C. Lee, Y.S. Shih, C.S. Wu, C.H. Tsai, S.T. Yeh, Y.H. Peng, J. Phys. D Appl. Phys. 45, 275102 (2012)

    Article  ADS  Google Scholar 

  23. W. Xu, T.J. Lu, F. Wang, Int. J. Solid Struct. 47, 1830 (2010)

    Article  Google Scholar 

  24. C.H. Hsueh, M. Yanaka, J. Mater. Sci. 38(8), 1809 (2003)

    Article  ADS  Google Scholar 

  25. Z. Suo, E.Y. Ma, H. Gleskova, S. Wanger, Appl. Phys. Lett. 74, 1177 (1999)

    Article  ADS  Google Scholar 

  26. P.H. Townsend, D.M. Barnett, T.A. Brunner, J. Appl. Phys. 62, 4438 (1998)

    Article  ADS  Google Scholar 

  27. H. Gleskova, I.-C. Cheng, S. Wagner, J.C. Sturm, Z. Suo, Sol Energy 80, 687–693 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Bum Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.B. Stress relaxation in LTPS TFT backplane by architecture modulation on plastic. Appl. Phys. A 125, 831 (2019). https://doi.org/10.1007/s00339-019-3135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3135-2

Navigation