Skip to main content
Log in

Analysis of thermal radiation from laser-heated nanoparticles formed by laser-induced decomposition of ferrocene

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thermal radiation, originating from laser-heated gas-phase nanoparticles, was detected in the 400–700 nm wavelength range by means of optical emission spectroscopy. The particles were formed upon laser-induced photolytic decomposition of ferrocene (Fe(C5H5)2) and consisted of an iron core surrounded by a carbon shell. The laser-induced excitation was performed as the particles were still within the reactor zone, and the temperature of the particles could be determined from thermal emission. Both the temperature of the nanoparticles and the relative intensity changes of the emission were monitored as a function of time (with respect to the laser pulse), laser fluence and Ar ambient pressure. At high laser fluences, the particles reached high temperatures, and evidence was found for boiling of iron. Modeling of possible energy-releasing mechanisms such as black-body radiation, thermionic electron emission, evaporation and heat transfer by the ambient gas was also performed. The dominant cooling mechanisms at different ranges of temperature were clarified, together with a determination of the accommodation factor for the Ar–nanoparticle collisions. The strong evaporation at elevated temperatures also led to significant iron loss from the produced particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Rohlfing: J. Chem. Phys. 89, 6103 (1988)

    Article  ADS  Google Scholar 

  2. S.C. O’Brien, J.R. Heath, R.F. Curl, R.E. Smalley: J. Chem. Phys. 88, 220 (1998)

    Article  Google Scholar 

  3. R. Mitzner, E. Campbell: J. Chem. Phys. 103, 2445 (1995)

    Article  ADS  Google Scholar 

  4. P. Heszler, J.-O. Carlsson, P. Demirev: J. Chem. Phys. 107, 10 440 (1997)

    Article  Google Scholar 

  5. U. Frenzel, U. Hammer, H. Westje, D. Kreisle: Z. Phys. D 40, 108 (1997)

    Article  ADS  Google Scholar 

  6. J.P. Apruzese: Astrophys. J. 196, 753 (1975)

    Article  ADS  Google Scholar 

  7. P.G. Martin, C. Rogers: Astrophys. J. 322, 374 (1987)

    Article  ADS  Google Scholar 

  8. L. Landström, Z. Márton, N. Arnold, H. Högberg, M. Boman, P. Heszler: J. Appl. Phys. 94, 2011 (2003)

    Article  ADS  Google Scholar 

  9. L. Landström, Z. Márton, M. Boman, P. Heszler: Appl. Phys. A 79, 537 (2004)

    Article  ADS  Google Scholar 

  10. Z. Márton, L. Landström, P. Heszler: Appl. Phys. A 79, 579 (2004)

    Article  ADS  Google Scholar 

  11. P. Heszler, K. Elihn, M. Boman, J.-O. Carlsson: Appl. Phys. A 70, 613 (2000)

    ADS  Google Scholar 

  12. P. Heszler, L. Landström, M. Lindstam, J.-O. Carlsson: J. Appl. Phys. 89, 3967 (2001)

    Article  ADS  Google Scholar 

  13. K. Elihn, L. Landström, P. Heszler: Appl. Surf. Sci. 186, 573 (2002)

    Article  ADS  Google Scholar 

  14. L. Landström, J. Lu, P. Heszler: J. Phys. Chem. B 107, 11 615 (2003)

    Article  Google Scholar 

  15. L. Landström, J. Kokavecz, J. Lu, P. Heszler: J. Appl. Phys. 95, 4408 (2004)

    Article  ADS  Google Scholar 

  16. C.F. Bohren, D.R. Huffman: Absorption and Scattering of Light by Small Particles (Wiley, New York 1983)

  17. E.D. Palik (Ed.): Handbook of Optical Constants of Solids (Academic, Orlando 1985)

  18. J.U. Andersen, E. Bonderup: Eur. Phys. J. D 11, 413 (2000)

    Article  ADS  Google Scholar 

  19. A. Sala: Radiant Properties of Materials. Tables of Radiant Values for Black Body and Real Materials (Elsevier, Amsterdam 1986)

  20. P. Heszler, K. Elihn, L. Landström, M. Boman: Smart Mater. Struct. 11, 631 (2002)

    Article  ADS  Google Scholar 

  21. M.W. Chase, C.A. Davies, J.R. Downey, D.J. Frurip, R.A. McDonald, A.N. Syverud (Eds.): NIST–JANAF Thermochemical Tables (American Chemical Society, Washington, DC 1985)

  22. C.E. Klots: Chem. Phys. Lett. 186, 73 (1991)

    Article  ADS  Google Scholar 

  23. C.E. Klots: Z. Phys. D 20, 105 (1991)

    Article  ADS  Google Scholar 

  24. G.A. Somorjai: Introduction to Surface Chemistry and Catalysis (Wiley, New York 1994)

  25. J.P. Perdew: Phys. Rev. B 37, 6175 (1988)

    Article  ADS  Google Scholar 

  26. D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin 2000)

  27. J.U. Andersen, E. Bonderup, K. Hansen: J. Phys. B: At. Mol. Opt. Phys. 35, R1 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Heszler.

Additional information

PACS

61.46.+w; 81.16.Mk; 65.80.+n

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landström, L., Elihn, K., Boman, M. et al. Analysis of thermal radiation from laser-heated nanoparticles formed by laser-induced decomposition of ferrocene. Appl. Phys. A 81, 827–833 (2005). https://doi.org/10.1007/s00339-005-3284-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3284-3

Keywords

Navigation