Skip to main content
Log in

Comparison of 3D multi-echo gradient-echo and 2D T2* MR sequences for the detection of arterial thrombus in patients with acute stroke

  • Neuro
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

We compared a multi-echo gradient-echo magnetic resonance sequence (susceptibility-weighted angiography [SWAN]) with the T2* sequence for the detection of an arterial thrombus in acute ischaemic stroke.

Methods

Seventy-four consecutive patients with acute ischaemic stroke were included. Proximal arterial occlusions were diagnosed using time-of-flight (TOF) magnetic resonance angiography (MRA). Two-dimensional (2D) axial reformats from 3D SWAN were generated to match with 2D T2* images. For arterial thrombus detection, each set of MR images (T2*, 2D SWAN reformats and 3D multiplanar SWAN images) was examined independently and separately by three observers who assigned the images to one of three categories: (0) absence of thrombus, (1) uncertain thrombus, (2) certain thrombus. Agreement and diagnostic accuracy were calculated.

Results

Twenty-four proximal arterial occlusions involving the anterior (n = 20) or posterior (n = 4) circulation were found. Inter-observer agreement was moderate using T2* images (κ = 0.58), good using 2D SWAN reformats (κ = 0.83) and excellent using multiplanar SWAN images (κ = 0.90). For the diagnosis of thrombus, T2* images were 54 % sensitive and 86 % specific, 2D SWAN reformats were 83 % sensitive and 94 % specific and SWAN multiplanar analysis was 96 % sensitive and 100 % specific.

Conclusions

Three-dimensional SWAN sequence improves the detection of arterial thrombus in patients with acute ischaemic stroke in comparison with the 2D T2* sequence.

Key Points

Multi-echo gradient-echo MR (e.g. susceptibility-weighted angiograph, [SWAN]) is increasingly used in neuroradiology.

Compared with conventional T2* sequences, SWAN improves detection of arterial thrombus.

Multiplanar SWAN analysis had the best diagnostic performance for arterial thrombus detection.

Sensitivity was 96 % and specificity 100 %.

Findings support combination of time-of-flight and susceptibility effects in suspected acute stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SWI:

Susceptibility-weighted imaging

TOF MRA:

Time-of-flight magnetic resonance angiography

SWAN:

Susceptibility-weighted angiography

GRE:

Gradient echo

ACA:

Anterior cerebral artery

PCA:

Posterior cerebral artery

MCA:

Middle cerebral artery

FLAIR:

Fluid-attenuated inversion recovery

References

  1. Derex L, Nighoghossian N, Hermier M et al (2002) Early detection of cerebral arterial occlusion on magnetic resonance angiography: predictive value of the baseline NIHSS score and impact on neurological outcome. Cerebrovasc Dis 13:225–229

    Article  CAS  PubMed  Google Scholar 

  2. Hermier M, Nighoghossian N (2004) Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke 35:1989–1994

    Article  PubMed  Google Scholar 

  3. Schellinger PD, Fiebach JB, Hacke W (2003) Imaging-based decision making in thrombolytic therapy for ischaemic stroke: present status. Stroke 34:575–583

    Article  PubMed  Google Scholar 

  4. Saqqur M, Uchino K, Demchuk AM et al (2007) Site of arterial occlusion identified by transcranial Doppler predicts the response to intravenous thrombolysis for stroke. Stroke 38:948–954

    Article  PubMed  Google Scholar 

  5. Flacke S, Urbach H, Keller E et al (2000) Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology 215:476–482

    Article  CAS  PubMed  Google Scholar 

  6. Chalela JA, Haymore JB, Ezzeddine MA et al (2002) The hypointense MCA sign. Neurology 58:1470

    Article  CAS  PubMed  Google Scholar 

  7. Rovira A, Orellana P, Alvarez-Sabin J et al (2004) Hyperacute ischaemic stroke: Middle cerebral artery susceptibility sign at echo-planar gradient-echo MR imaging. Radiology 232:466–473

    Article  PubMed  Google Scholar 

  8. Assouline E, Benziane K, Reizine D et al (2005) Intra-arterial thrombus visualized on T2* gradient echo imaging in acute ischaemic stroke. Cerebrovasc Dis 20:6–11

    Article  CAS  PubMed  Google Scholar 

  9. Atlas SW, Mark AS, Grossman RI et al (1988) Intracranial haemorrhage: gradient-echo MR imaging at 1.5 T. Comparison with spin-echo imaging and clinical applications. Radiology 168:803–807

    CAS  PubMed  Google Scholar 

  10. Clark RA, Watanabe AT, Bradley WG Jr et al (1990) Acute hematomas: effects of deoxygenation, hematocrit, and fibrin-clot formation and retraction on T2 shortening. Radiology 175:201–206

    CAS  PubMed  Google Scholar 

  11. Linfante I, Llinas RH, Caplan LR et al (1999) MRI features of intracerebral haemorrhage within 2 hours from symptom onset. Stroke 30:2263–2267

    Article  CAS  PubMed  Google Scholar 

  12. Patel MR, Edelman RR, Warach S (1996) Detection of hyperacute primary intraparenchymal haemorrhage by magnetic resonance imaging. Stroke 27:2321–2324

    Article  CAS  PubMed  Google Scholar 

  13. Schellinger PD, Jansen O, Fiebach JB et al (1999) A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral haemorrhage. Stroke 30:765–768

    Article  CAS  PubMed  Google Scholar 

  14. Jagadeesan BD, Delgado Almandoz JE et al (2011) Accuracy of susceptibility-weighted imaging for the detection of arteriovenous shunting in vascular malformations of the brain. Stroke 42:87–92

    Article  PubMed Central  PubMed  Google Scholar 

  15. Haacke EM, Mittal S, Wu Z et al (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30:19–30

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Reichenbach JR, Venkatesan R, Schillinger DJ et al (1997) Small vessels in the human brain: MR venography with deoxyhaemoglobin as an intrinsic contrast agent. Radiology 204:272–277

    CAS  PubMed  Google Scholar 

  17. Haacke EM, Xu Y, Cheng YC et al (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52:612–618

    Article  PubMed  Google Scholar 

  18. Boeckh-Behrens T, Lutz J, Lummel N et al (2012) Susceptibility-weighted angiography (SWAN) of cerebral veins and arteries compared to TOF-MRA. Eur J Radiol 81:1238–1245

    Article  CAS  PubMed  Google Scholar 

  19. Annamraju RB VR, Vu AT (2008) T2* weighted angiography (SWAN): T2* weighted non-contrast imaging with multi-echo acquisition and reconstruction. Proceedings of the ESMRMB,Valencia, October 2–4, Abstract 482

  20. Hodel J, Blanc R, Rodallec M et al (2013) Susceptibility-weighted angiography for the detection of high-flow intracranial vascular lesions: preliminary study. Eur Radiol 23:1122–1130

    Article  PubMed  Google Scholar 

  21. Hayashida Y, Kakeda S, Hiai Y et al. (2013) Diagnosis of intracranial hemorrhagic lesions: comparison between 3D-SWAN (3D T2*-weighted imaging with multi-echo acquisition) and 2D-T2*-weighted imaging. Acta Radiol [Epub ahead of print]

  22. Mori N, Miki Y, Kikuta K et al (2008) Microbleeds in moyamoya disease: susceptibility-weighted imaging versus T2*-weighted imaging at 3 Tesla. Invest Radiol 43:574–579

    Article  PubMed  Google Scholar 

  23. de Souza JM, Domingues RC, Cruz LC Jr et al (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29:154–158

    Article  PubMed  Google Scholar 

  24. Du YP, Jin Z, Hu Y, Tanabe J (2009) Multi-echo acquisition of MR angiography and venography of the brain at 3 Tesla. JMRI 30:449–454

    Article  PubMed  Google Scholar 

  25. Taber KH, Hayman LA, Herrick RC et al (1996) Importance of clot structure in gradient-echo magnetic resonance imaging of hematoma. J Magn Reson Imaging 6:878–883

    Article  CAS  PubMed  Google Scholar 

  26. Cho KH, Kim JS, Kwon SU et al (2005) Significance of susceptibility vessel sign on T2*-weighted gradient echo imaging for identification of stroke subtypes. Stroke 36:2379–2383

    Article  PubMed  Google Scholar 

  27. Shinohara Y, Kinoshita T, Kinoshita F (2012) Changes in susceptibility signs on serial T2*-weighted single-shot echo-planar gradient-echo images in acute embolic infarction: comparison with recanalization status on 3D time-of-flight magnetic resonance angiography. Neuroradiology 54:427–434

    Article  PubMed  Google Scholar 

  28. Liebeskind DS, Sanossian N, Yong WH et al (2011) CT and MRI early vessel signs reflect clot composition in acute stroke. Stroke 42:1237–1243

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Cecile Rabrait is an employee of General Electric

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Hodel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodel, J., Leclerc, X., Khaled, W. et al. Comparison of 3D multi-echo gradient-echo and 2D T2* MR sequences for the detection of arterial thrombus in patients with acute stroke. Eur Radiol 24, 762–769 (2014). https://doi.org/10.1007/s00330-013-3061-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-3061-1

Keywords

Navigation