Skip to main content
Log in

Exploring RSM-CCD-optimized chitosan-/gelatin-based hybrid polymer network containing CPM–β-CD inclusion complexes as controlled drug delivery systems

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present work reported the synthesis of pH-responsive hybrid polymer network (HPN) of chitosan and gelatine by using glutaraldehyde as a cross-linker. Different reaction parameters like backbone ratio, amount of solvent, pH, the time, the temperature of reaction mixture and concentration of cross-linker were optimized with response surface methodology in order to maximize the percentage swelling. The maximum percentage swelling was obtained 530.48% under most optimized conditions of the ratio (1:1), pH (7) and cross-linker (0.241 mol/l). Poor loading of drug in traditional drug delivery is improved by incorporating preformed inclusion complex of chlorphenamine maleate (CPM) with β-cyclodextrin (1:1) under microwave conditions directly into the HPN matrix. Further, HPN matrix was used to investigate the in situ controlled release of CPM under different pH conditions at 37 °C. CPM release showed the best fit to the Peppas–Sahlin equation under all pH conditions at 37 °C. Thus, HPN prepared by using RSM design is a good device to deliver the CPM in a controlled manner.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CH:

Chitosan

GEL:

Gelatin

HPN:

Hybrid polymer network

GLA:

Glutaraldehyde

IC:

Inclusion complex

β-CD:

Beta-cyclodextrin

CPM:

Chlorphenamine maleate

IPN:

Interpenetrating network

IA:

In air

References

  1. Sun Y, Huang J, Lin F, Lai J (1997) Composite poly(2-hydroxyethyl methacrylate) membranes as rate-controlling barriers for transdermal applications. Biomaterials 18:527–533

    Article  CAS  PubMed  Google Scholar 

  2. Kashyap N, Kumar N, Kumar MNVR (2005) Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst 22:107–149

    Article  CAS  PubMed  Google Scholar 

  3. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21:27–47. https://doi.org/10.1002/pat.1504

    Article  CAS  Google Scholar 

  4. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27–46

    Article  CAS  PubMed  Google Scholar 

  5. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005

    Article  CAS  Google Scholar 

  6. Martens P, Anseth KS (2000) Characterization of hydrogels formed from acrylate modified poly(vinyl alcohol) macromers. Polym (Guildf) 41:7715–7722. https://doi.org/10.1016/S0032-3861(00)00123-3

    Article  CAS  Google Scholar 

  7. Xue W, Champ S, Huglin MB, Jones TGJ (2004) Rapid swelling and deswelling in cryogels of crosslinked poly(N-isopropylacrylamide-co-acrylic). Eur Polym J 40:703–712. https://doi.org/10.1016/j.eurpolymj.2003.10.021

    Article  CAS  Google Scholar 

  8. Sukriti BS, Kaith R, Jindal M, Kumari M (2017) Kaur, Biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release. React Funct Polym 120:1–13. https://doi.org/10.1016/j.reactfunctpolym.2017.08.012

    Article  CAS  Google Scholar 

  9. Kaith BS, Jindal R, Sharma R (2015) Synthesis of a Gum rosin alcohol-poly(acrylamide) based adsorbent and its application in removal of malachite green dye from waste water. RSC Adv 5:43092–43104. https://doi.org/10.1039/C5RA04256A

    Article  CAS  Google Scholar 

  10. Sionkowska A, Wisniewski M, Skopinska J, Poggi GF, Marsano E, Maxwell CA, Wess TJ (2006) Thermal and mechanical properties of UV irradiated collagen/chitosan thin films. Polym Degrad Stab 91:3026–3032. https://doi.org/10.1016/j.polymdegradstab.2006.08.009

    Article  CAS  Google Scholar 

  11. Stockwell AF, Davis SS (1986) In vitro evaluation of alginate gel systems as sustained release drug delivery systems. J Control Release 3:167–175. https://doi.org/10.1016/0168-3659(86)90077-5

    Article  CAS  Google Scholar 

  12. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226. https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  PubMed  Google Scholar 

  13. Blaney LM, Cinar S, SenGupta AK (2007) Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res 41:1603–1613. https://doi.org/10.1016/j.watres.2007.01.008

    Article  CAS  PubMed  Google Scholar 

  14. Mao S, Sun W, Kissel T (2010) A drug delivery reviews: chitosan-based formulations for delivery of DNA and siRNA. Elsevier, Amsterdam

    Google Scholar 

  15. Fu X, Liu H, Liu Y, Liu Y (2013) Application of chitosan and its derivatives in analytical chemistry: a mini-review. J Carbohydr Chem 32:463–474. https://doi.org/10.1080/07328303.2013.863318

    Article  CAS  Google Scholar 

  16. Das S, Subuddhi U (2013) Cyclodextrin mediated controlled release of naproxen from pH-sensitive chitosan/poly(vinyl alcohol) hydrogels for colon targeted delivery. Ind Eng Chem Res 52:14192–14200. https://doi.org/10.1021/ie402121f

    Article  CAS  Google Scholar 

  17. Don T-M, King C-F, Chiu W-Y (2002) Synthesis and properties of chitosan-modified poly(vinyl acetate). J Appl Polym Sci 86:3057–3063. https://doi.org/10.1002/app.11329

    Article  CAS  Google Scholar 

  18. Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31–38. https://doi.org/10.1016/j.carbpol.2013.08.048

    Article  CAS  PubMed  Google Scholar 

  19. Lohani A, Singh G, Bhattacharya SS, Verma A (2014) Interpenetrating polymer networks as innovative drug delivery systems. J Drug Deliv 2014:583612. https://doi.org/10.1155/2014/583612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peng Z, Peng Z, Shen Y (2011) Fabrication and properties of gelatin/chitosan composite hydrogel. Polym Plast Technol Eng 50:1160–1164. https://doi.org/10.1080/03602559.2011.574670

    Article  CAS  Google Scholar 

  21. Das S, Subuddhi U (2014) Exploring poly(vinyl alcohol) hydrogels containing drug-cyclodextrin complexes as controlled drug delivery systems. J Appl Polym Sci 131:1–13. https://doi.org/10.1002/app.40318

    Article  CAS  Google Scholar 

  22. Kaith BS, Sharma R, Kalia S, Bhatti MS (2014) Response surface methodology and optimized synthesis of guar gum-based hydrogels with enhanced swelling capacity. RSC Adv 4:40339–40344. https://doi.org/10.1039/C4RA05300A

    Article  CAS  Google Scholar 

  23. Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review, Iran. Polym J 19:375–398. https://doi.org/10.1007/s12303-009-0004-6

    Article  CAS  Google Scholar 

  24. Sukriti JS, Sukriti P, Pruthi V, Chaddha AS, Bhatia J, Kaith BS (2017) RSM-CCD optimized adsorbent for the sequestration of carcinogenic rhodamine-B: kinetics and equilibrium studies. Mater Chem Phys 196:270–283. https://doi.org/10.1016/j.matchemphys.2017.04.042

    Article  CAS  Google Scholar 

  25. Das S, Subuddhi U (2015) Studies on the complexation of diclofenac sodium with β-cyclodextrin: influence of method of preparation. J Mol Struct 1099:482–489. https://doi.org/10.1016/j.molstruc.2015.07.001

    Article  CAS  Google Scholar 

  26. Sukriti JS, Chadha AS, Pruthi V, Anand P, Bhatia J, Kaith BS (2017) Sequestration of dyes from artificially prepared textile effluent using RSM-CCD optimized hybrid backbone based adsorbent-kinetic and equilibrium studies. J Environ Manage 190:176–187. https://doi.org/10.1016/j.jenvman.2016.12.065

    Article  CAS  PubMed  Google Scholar 

  27. Sukriti S, Sharma J, Pruthi V, Anand P, Singh Chaddha AP, Bhatia J, Kaith BS (2016) Surface response methodology–central composite design screening for the fabrication of a Gx-psy-g-polyacrylicacid adsorbent and sequestration of auramine-O dye from a textile effluent. RSC Adv 6:74300–74313. https://doi.org/10.1039/c6ra12715k

    Article  CAS  Google Scholar 

  28. Saruchi S, Kaith BS, Jindal R, Kumar V, Bhatti MS (2014) Optimal response surface design of Gum tragacanth-based poly[(acrylic acid)-co-acrylamide] IPN hydrogel for the controlled release of the antihypertensive drug losartan potassium. RSC Adv 4:39822–39829. https://doi.org/10.1039/C4RA02803A

    Article  CAS  Google Scholar 

  29. Bakravi A, Ahamadian Y, Hashemi H, Namazi H (2018) Synthesis of gelatin-based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Polym Technol. https://doi.org/10.1002/adv.21938

    Article  Google Scholar 

  30. Yadollahi M, Gholamali I, Namazi H, Aghazadeh M (2015) Synthesis and characterization of antibacterial carboxymethylcellulose/CuO bio-nanocomposite hydrogels. Int J Biol Macromol 73:109–114. https://doi.org/10.1016/j.ijbiomac.2014.10.063

    Article  CAS  PubMed  Google Scholar 

  31. Sharma P, Jindal R, Maiti M, Jana AK (2016) Novel organic–inorganic composite material as a cation exchanger from a triterpenoidal system of dammar gum: synthesis, characterization and application, Iran. Polym J. https://doi.org/10.1007/s13726-016-0456-2

    Article  Google Scholar 

  32. Rasoulzadeh M, Namazi H (2017) Carboxymethyl cellulose/graphene oxide bio-nanocomposite hydrogel beads as anticancer drug carrier agent. Carbohydr Polym 168:320–326. https://doi.org/10.1016/j.carbpol.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  33. Bibby DC, Davies NM, Tucker IG (2000) Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int J Pharm 197:1–11. https://doi.org/10.1016/S0378-5173(00)00335-5

    Article  CAS  PubMed  Google Scholar 

  34. Kanjickal D, Lopina S, Evancho-Chapman MM, Schmidt S, Donovan D (2005) Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J Biomed Mater Res Part A 74A:454–460. https://doi.org/10.1002/jbm.a.30374

    Article  CAS  Google Scholar 

  35. Vimala K, Sivudu K, Mohan Y, Sreedhar B, Raju K (2009) Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: a rational methodology for antibacterial application. Elsevier, Amsterdam

    Google Scholar 

  36. Higuchi T (1963) Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149. https://doi.org/10.1002/jps.2600521210

    Article  CAS  PubMed  Google Scholar 

  37. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42. https://doi.org/10.1016/0168-3659(87)90035-6

    Article  CAS  Google Scholar 

  38. Peppas NA, Sahlin JJ (1989) A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm 57:169–172. https://doi.org/10.1016/0378-5173(89)90306-2

    Article  CAS  Google Scholar 

  39. Das S, Subuddhi U, Kulkarni RV, Boppana R, Mohan GK, Mutalik S, Kalyane NV, Ma L, Liu M, Liu H, Chen J, Gao C, Cui D, Vats A, Pathak K, Van den Mooter G, Chourasia MK, Jain SK (2014) Controlled delivery of dexamethasone to the intestine from poly(vinyl alcohol)–poly(acrylic acid) microspheres containing drug-cyclodextrin complexes: influence of method of preparation of inclusion complex. RSC Adv 4:24222. https://doi.org/10.1039/c4ra02736a

    Article  CAS  Google Scholar 

  40. Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr Polym 75:15–21. https://doi.org/10.1016/J.CARBPOL.2008.06.006

    Article  CAS  Google Scholar 

  41. Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS (2016) Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 85:327–334. https://doi.org/10.1016/j.ijbiomac.2015.12.076

    Article  CAS  PubMed  Google Scholar 

  42. Rakhshaei R, Namazi H (2017) A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater Sci Eng C 73:456–464. https://doi.org/10.1016/j.msec.2016.12.097

    Article  CAS  Google Scholar 

  43. Namazi H, Babazadeh M, Sarabi A, Entezami A (2001) Synthesis and hydrolysis of acrylic type polymers containing non steroidal anti-inflammatory drugs. J Polym Mater 18:301–311

    CAS  Google Scholar 

  44. Cárdenas A, Argüelles-Monal W, Goycoolea FM, Higuera-Ciapara I, Peniche C (2003) Diffusion through membranes of the polyelectrolyte complex of chitosan and alginate. Macromol Biosci 3:535–539. https://doi.org/10.1002/mabi.200300031

    Article  CAS  Google Scholar 

  45. Logan BK (2009) Combined dextromethorphan and chlorpheniramine intoxication in impaired drivers. J Forensic Sci 54:1176–1180. https://doi.org/10.1111/j.1556-4029.2009.01127.x

    Article  CAS  PubMed  Google Scholar 

  46. Monte AA, Chuang R, Bodmer M (2010) Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review. Br J Clin Pharmacol 70:794–798. https://doi.org/10.1111/j.1365-2125.2010.03747.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125. https://doi.org/10.1016/j.ejpb.2005.05.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

One of the authors is highly grateful to MHRD for providing financial assistance to carry out research. The author is also thankful to Instrumentation Center, IIT Roorkee, Punjab University, Chandigarh, for different characterization of samples and DST-FIST for providing financial assistance for procurement of equipment like FTIR and UV–Vis spectrophotometer used in the characterization of the samples.

Funding

Funding was provided by MHRD [Grant No. 15520006 (Reg No.)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Jindal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, K., Jindal, R. Exploring RSM-CCD-optimized chitosan-/gelatin-based hybrid polymer network containing CPM–β-CD inclusion complexes as controlled drug delivery systems. Polym. Bull. 76, 3569–3592 (2019). https://doi.org/10.1007/s00289-018-2555-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-018-2555-z

Keywords

Navigation