Skip to main content
Log in

Can chemotaxis speed up or slow down the spatial spreading in parabolic–elliptic Keller–Segel systems with logistic source?

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The current paper is concerned with the spatial spreading speed and minimal wave speed of the following Keller–Segel chemoattraction system,

$$\begin{aligned} \left\{ \begin{aligned}&u_t=u_{xx}-\chi (uv_x)_x +u(a-bu),\quad x\in {{\mathbb {R}}},\\&0=v_{xx}- \lambda v+\mu u,\quad x\in {{\mathbb {R}}}, \ \end{aligned}\right. \end{aligned}$$
(0.1)

where \(\chi \), a, b, \(\lambda \), and \(\mu \) are positive constants. Assume \(b>\chi \mu \) . Then if in addition \(\big (1+\frac{1}{2}\frac{(\sqrt{a}-\sqrt{\lambda })_+}{(\sqrt{a}+\sqrt{\lambda })}\big )\chi \mu { \le } b\) holds, it is proved that \(c_0^*=2\sqrt{a}\) is the spreading speed of the solutions of (0.1) with nonnegative continuous initial function \(u_0\) with nonempty compact support, that is,

$$\begin{aligned} \limsup _{|x|\ge ct, t\rightarrow \infty }u(t,x;u_0)=0\quad \forall \, c>c_0^* \end{aligned}$$

and

$$\begin{aligned} \liminf _{|x|\le ct,t\rightarrow \infty } u(t,x;u_0)>0\quad \forall \, 0<c<c_0^*, \end{aligned}$$

where \((u(t,x;u_0),v(t,x;u_0))\) is the unique global classical solution of (0.1) with \(u(0,x;u_0)=u_0(x)\). It is also proved that, if \(b>2\chi \mu \) and \(\lambda \ge a\) holds, then \(c_0^*=2\sqrt{a}\) is the minimal speed of the traveling wave solutions of (0.1) connecting (0, 0) and \((\frac{a}{b},\frac{\mu }{\lambda }\frac{a}{b})\), that is, for any \(c\ge c_0^*\), (0.1) has a traveling wave solution connecting (0, 0) and \((\frac{a}{b},\frac{\mu }{\lambda }\frac{a}{b})\) with speed c, and (0.1) has no such traveling wave solutions with speed less than \(c_0^*\). Note that \(c_0^*=2\sqrt{a}\) is the spatial spreading speed as well as the minimal wave speed of the following Fisher-KPP equation,

$$\begin{aligned} u_t=u_{xx}+u(a-bu),\quad x\in {{\mathbb {R}}}. \end{aligned}$$
(0.2)

Hence, if \(\lambda \ge a\) and \(b>\chi \mu \), or \(\lambda <a\) and \(b\ge \big (1+\frac{1}{2}\frac{(\sqrt{a}-\sqrt{\lambda })}{(\sqrt{a}+\sqrt{\lambda })}\big )\chi \mu \), then the chemotaxis neither speeds up nor slows down the spatial spreading in (0.1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ai S, Wang ZA (2015) Traveling bands for the Keller–Segel model with population growth. Math Biosci Eng 12(4):717–737

    MathSciNet  MATH  Google Scholar 

  • Ai S, Huang W, Wang ZA (2015) Reaction, diffusion and chemotaxis in wave propagation. Discret Contin Dyn Syst Ser B 20(1):1–21

    MathSciNet  MATH  Google Scholar 

  • Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusions arising in population genetics. Adv Math 30:33–76

    MathSciNet  MATH  Google Scholar 

  • Bellomo N, Bellouquid A, Tao Y, Winkler M (2015) Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues. Math Models Methods Appl Sci 25:1663–1763

    MathSciNet  MATH  Google Scholar 

  • Berestycki H, Hamel F, Nadirashvili N (2005) The speed of propagation for KPP type problems, I—periodic framework. J Eur Math Soc 7:172–213

    MathSciNet  MATH  Google Scholar 

  • Berestycki H, Hamel F, Nadin G (2008) Asymptotic spreding in heterogeneous diffusive excitable media. J Funct Anal 255:2146–2189

    MathSciNet  MATH  Google Scholar 

  • Berestycki H, Hamel F, Nadirashvili N (2010) The speed of propagation for KPP type problems, II—general domains. J Am Math Soc 23(1):1–34

    MathSciNet  MATH  Google Scholar 

  • Fisher R (1937) The wave of advance of advantageous genes. Ann Eugen 7:335–369

    MATH  Google Scholar 

  • Freidlin M (1984) On wave front propagation in periodic media. In: Pinsky M (ed) Stochastic analysis and applications, vol 7. Advances in probability and related topics. Dekker, New York, pp 147–166

    Google Scholar 

  • Freidlin M, Gärtner J (1979) On the propagation of concentration waves in periodic and random media. Sov Math Dokl 20:1282–1286

    MATH  Google Scholar 

  • Funaki M, Mimura M, Tsujikawa T (2006) Traveling front solutions arising in the chemotaxis-growth model. Interfaces Free Bound 8:223–245

    MathSciNet  MATH  Google Scholar 

  • Hamel F, Henderson C (2017) Propagation in a Fisher-KPP equation with non-local advection (hal-01580261)

  • Hillen T, Painter K (2009) A user’s guide to PDE models for chemotaxis. J Math Biol 58:183–217

    MathSciNet  MATH  Google Scholar 

  • Horstmann D (2003) From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. Jahresber Dtsch Math Ver 105:103–165

    MathSciNet  MATH  Google Scholar 

  • Horstmann D, Stevens A (2004) A constructive approach to traveling waves in chemotaxis. J Nonlinear Sci 14:1–25

    MathSciNet  MATH  Google Scholar 

  • Horstmann D, Winkler M (2005) Boundedness versus blow up in a chemotaxis system. J Differ Equ 215:52–107

    MATH  Google Scholar 

  • Issa TB, Shen W (2017) Dynamics in chemotaxis models of parabolic–elliptic type on bounded domain with time and space dependent logistic sources. SIAM J Appl Dyn Syst 16(2):926–973

    MathSciNet  MATH  Google Scholar 

  • Kang K, Steven A (2016) Blowup and global solutions in a chemotaxis-growth system. Nonlinear Anal 135:57–72

    MathSciNet  MATH  Google Scholar 

  • Keller E, Segel L (1970) Initiation of slime mold aggregation viewed as an instability. J Theoret Biol 26:399–415

    MathSciNet  MATH  Google Scholar 

  • Keller E, Segel L (1971) A model for chemotaxis. J Theoret Biol 30:225–234

    MATH  Google Scholar 

  • Kolmogorov A, Petrowsky I, Piskunov N (1931) A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul Moskovskogo Gos Univ 1:1–26

    Google Scholar 

  • Kuto K, Osaki K, Sakurai T, Tsujikawa T (2012) Spatial pattern formation in a chemotaxis-diffusion-growth model. Phys D 241:1629–1639

    MathSciNet  MATH  Google Scholar 

  • Li J, Li T, Wang ZA (2014) Stability of traveling waves of the Keller–Segel system with logarithmic sensitivity. Math Models Methods Appl Sci 24(14):2819–2849

    MathSciNet  MATH  Google Scholar 

  • Liang X, Zhao XQ (2007) Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun Pure Appl Math 60(1):1–40

    MathSciNet  MATH  Google Scholar 

  • Liang X, Zhao XQ (2010) Spreading speeds and traveling waves for abstract monostable evolution systems. J Funct Anal 259:857–903

    MathSciNet  MATH  Google Scholar 

  • Luckhaus S, Sugiyama Y, Veläzquez J (2012) Measure valued solutions of the 2d Keller–Segel system. Arch Rat Mech Anal 206:31–80

    MathSciNet  MATH  Google Scholar 

  • Marchant BP, Norbury J, Sherratt JA (2001) Traveling wave solutions to a haptotaxis-dominated model of malignant invasion. Nonlinearity 14:1653–1671

    MathSciNet  MATH  Google Scholar 

  • Müller-Taubenberger A, Hortholt A, Eichinger L (2012) Simple system—substantial share: the use of Dictyostelium in cell biology and molecular medicine. Eur J Cell Biol 92(2):45–53

    Google Scholar 

  • Nadin G (2009) Traveling fronts in space–time periodic media. J Math Pures Anal 92:232–262

    MathSciNet  MATH  Google Scholar 

  • Nadin G, Perthame B, Ryzhik L (2008) Traveling waves for the Keller–Segel system with Fisher birth terms. Interfaces Free Bound 10(4):517–538

    MathSciNet  MATH  Google Scholar 

  • Nagai T, Senba T, Yoshida K (1997) Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcialaj Ekvacioj 40:411–433

    MathSciNet  MATH  Google Scholar 

  • Nolen J, Xin J (2005) Existence of KPP type fronts in space–time periodic shear flows and a study of minimal speeds based on variational principle. Discret Contin Dyn Syst 13:1217–1234

    MathSciNet  MATH  Google Scholar 

  • Nolen J, Rudd M, Xin J (2005) Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds. Dyn PDE 2:1–24

    MathSciNet  MATH  Google Scholar 

  • Salako RB, Shen W (2017a) Global existence and asymptotic behavior of classical solutions to a parabolic–elliptic chemotaxis system with logistic source on \({\mathbb{R}}^n\). J Differ Equ 262:5635–5690

    MATH  Google Scholar 

  • Salako RB, Shen W (2017b) Spreading speeds and traveling waves of a parabolic–elliptic chemotaxis system with logistic source on \({\mathbb{R}}^n\). Discret Contin Dyn Syst Ser A 37:6189–6225

    MATH  Google Scholar 

  • Salako RB, Shen W (2018a) Existence of traveling wave solution of parabolic–parabolic chemotaxis systems. Nonlinear Anal Real World Appl 42:93–119

    MathSciNet  MATH  Google Scholar 

  • Salako RB, Shen W (2018b) Parabolic–elliptic chemotaxis model with space–time dependent logistic sources on \({\mathbb{R}}^n\). I. Persistence and asymptotic spreading. Math Model Method Appl Sci 28(11):2237–2273

    MATH  Google Scholar 

  • Shen W (2010) Variational principle for spatial spreading speeds and generalized propagating speeds in time almost and space periodic KPP models. Trans Am Math Soc 362:5125–5168

    MATH  Google Scholar 

  • Shen W (2011) Existence of generalized traveling waves in time recurrent and space periodic monostable equations. J Appl Anal Comput 1:69–93

    MathSciNet  MATH  Google Scholar 

  • Tello J, Winkler M (2007) A chemotaxis system with logistic source. Commun Partial Differ Equ 32:849–877

    MathSciNet  MATH  Google Scholar 

  • Tello J, Winkler M (2013) Reduction of critical mass in a chemotaxis system by external application of a chemoattractant. Ann Sci Norm Sup Pisa Cl Sci 12:833–862

    MathSciNet  MATH  Google Scholar 

  • Wang ZA (2013) Mathematics of traveling waves in chemotaxis—review paper. Discret Contin Dyn Syst Ser B 18(3):601–641

    MathSciNet  MATH  Google Scholar 

  • Weinberger HF (1982) Long-time behavior of a class of biology models. SIAM J Math Anal 13:353–396

    MathSciNet  MATH  Google Scholar 

  • Weinberger HF (2002) On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol 45:511–548

    MathSciNet  MATH  Google Scholar 

  • Winkler M (2010) Aggregation versus global diffusive behavior in the higher-dimensional Keller–Segel model. J Differ Equ 248:2889–2905

    MATH  Google Scholar 

  • Winkler M (2011) Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction. J Math Anal Appl 384:261–272

    MathSciNet  MATH  Google Scholar 

  • Winkler M (2013) Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J Math Pures Appl 100:748–767

    MathSciNet  MATH  Google Scholar 

  • Zlatoš A (2012) Transition fronts in inhomogeneous Fisher-KPP reaction–diffusion equations. J Math Pures Appl 98(1):89–102

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for carefully reading the manuscript and their suggestions which considerably improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuwen Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenxian Shen: Partially supported by the NSF Grant DMS–1645673.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salako, R.B., Shen, W. & Xue, S. Can chemotaxis speed up or slow down the spatial spreading in parabolic–elliptic Keller–Segel systems with logistic source?. J. Math. Biol. 79, 1455–1490 (2019). https://doi.org/10.1007/s00285-019-01400-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-019-01400-0

Keywords

Mathematics Subject Classification

Navigation